多项式逼近连续函数

  本文可作为线性代数实现线性回归的下篇,先简单回顾一下,线性代数实现线性回归中介绍了子空间的概念,把子空间想象成一个超平面,子空间中任意一个向量都可以用子空间的基线性组成,线性回归原理是已知一个超平面和超平面外的一个向量,该向量与在超平面上的投影距离最短,或者说误差最小,在得到这个投影的同时就知道了未知参数,未知参数是投影在子空间基上的坐标。

    上篇中介绍的空间是一个由向量组成的空间,向量中元素是实数。 本文将拓展子空间的概念,空间的元素是函数称之为函数空间,这个空间里面有我们熟悉的各种函数以及这些函数的线性组合。函数空间里的子空间是一系列性质相似的函数集合,比如三角函数可以组成一个子空间,由数学分析知道利用三角函数可以实现傅里叶变换,将其他函数表示为三角函数线性组合成的级数形式。本文中选取的空间是一个多项式空间,即其空间里基是x0,x1,x2,x3,...xn...等多项式,需要将其他函数投影到这个子空间里,其运用的知识还是来自于线性代数。

1600325959858016665.jpg

    使用上图来说明函数空间,AP代表了函数空间里的一个函数,而下面的平面代表了多项式子空间,AP在多项式空间里的投影AC就是与AP误差最小的多项式,AC是x0,x1,x2,x3,...xn等多项式的线性组合,我们目标就是求出这个线性组合表达式中每个基前面的系数(坐标)。

一、一元多项式逼近任意一元连续函数

    这里结合一段python代码说明,这段代码的功能是利用多项式逼近函数f(x)=sin(x)-3cos(x)。 

import numpy as np

import math

from sympy import *

from scipy.integrate import tplquad, dblquad, quad

from scipy.linalg import *

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']

plt.rcParams['axes.unicode_minus'] = False

NSplit_Num = 10000


class polynomialAppro(object):

    def __init__(self, split=1000):

        self.splitnum = split

        pass

 &n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值