ST-GCN代码解读

在这里插入图片描述
以openpose为例,大致分为两部分:

1 时空图的创建

1.1 初始化

    def __init__(self,
                 layout='openpose',
                 strategy='uniform',
                 max_hop=1,
                 dilation=1):
        self.max_hop = max_hop
        self.dilation = dilation  # Distance Partitioning

        self.get_edge(layout)  # 确定图中连接的节点
        self.hop_dis = get_hop_distance(  # 获得邻接矩阵
            self.num_node, self.edge, max_hop=max_hop)
        self.get_adjacency(strategy)  # 根据分区策略获得邻域

1.2 get_edge确定图中连接的节点

    def get_edge(self, layout):
        if layout == 'openpose':
            self.num_node = 18
            self_link = [(i, i) for i in range(self.num_node)]
            neighbor_link = [(4, 3), (3, 2), (7, 6), (6, 5), (13, 12), (12, 11),
                             (10, 9), (9, 8), (11, 5), (8, 2), (5, 1), (2, 1),
                             (0, 1), (15, 0), (14, 0), (17, 15), (16, 14)]
            self.edge = self_link + neighbor_link
            self.center = 1
        elif layout == 'ntu-rgb+d':
            self.num_node = 25
            self_link = [(i, i) for i in range(self.num_node)]
            neighbor_1base = [(1, 2), (2, 21), (3, 21), (4, 3), (5, 21),
                              (6, 5), (7, 6), (8, 7), (9, 21), (10, 9),
                              (11, 10), (12, 11), (13, 1), (14, 13), (15, 14),
                              (16, 15), (17, 1), (18, 17), (19, 18), (20, 19),
                              (22, 23), (23, 8), (24, 25), (25, 12)]
            neighbor_link = [(i - 1, j - 1) for (i, j) in neighbor_1base]
            self.edge = self_link + neighbor_link
            self.center = 21 - 1
        elif layout == 'ntu_edge':
            self.num_node = 24
            self_link = [(i, i) for i in range(self.num_node)]
            neighbor_1base = [(1, 2), (3, 2), (4, 3), (5, 2), (6, 5), (7, 6),
                              (8, 7), (9, 2), (10, 9), (11, 10), (12, 11),
                              (13, 1), (14, 13), (15, 14), (16, 15), (17, 1),
                              (18, 17), (19, 18), (20, 19), (21, 22), (22, 8),
                              (23, 24), (24, 12)]
            neighbor_link = [(i - 1, j - 1) for (i, j) in neighbor_1base]
            self.edge = self_link + neighbor_link
            self.center = 2
        # elif layout=='customer settings'
        #     pass
        else:
            raise ValueError("Do Not Exist This Layout.")

以openpose为例:
openpose有18个关键点,因此self.num_node=18变量self_link是某个节点到自身节点的连线(如左耳到左耳)。不同节点组成17个关节(如左眼到左耳…),即变量neighbor_1base

结果如下:
在这里插入图片描述

1.3 get_hop_distance获得邻接矩阵

def get_hop_distance(num_node, edge, max_hop=1):
    A = np.zeros((num_node, num_node))
    for i, j in edge:
        A[j, i] = 1
        A[i, j] = 1

    # compute hop steps
    hop_dis = np.zeros((num_node, num_node)) + np.inf
    transfer_mat = [np.linalg.matrix_power(A, d) for d in range(max_hop + 1)]
    arrive_mat = (np.stack(transfer_mat) > 0)
    for d in range(max_hop, -1, -1):
        hop_dis[arrive_mat[d]] = d
    return hop_dis

输入:

  1. num_node 姿态识别检测的关节点个数
  2. edge 1.2小结中得到的边
  3. max_hop

矩阵A表示的就是每两个节点之间是否有边连接,也就是是否相邻。因此,需要创建一个18x18的矩阵(openpose),即变量A。

根据1.2小结得到的连接的节点,使节点间有连接的用1表示,没有连接的用0表示,得到的部分结果如图所示
在这里插入图片描述
之后初始化一个变量hop_dis,也是一个18x18,值为inf(无限大)的矩阵。然后将连接的点设置为1,其余不变都是inf,代表连接的节点间距离是1,不连接的是无限大得到的结果如下:
在这里插入图片描述
上面这段代码得到hop_dis的这段代码不太明白有什么用,看起来和下面这段代码效果一致(更简洁):

    # compute hop steps
    hop_dis = np.zeros((num_node, num_node)) + np.inf
    arrive_mat = A > 0
    hop_dis[arrive_mat] = 1

1.4 get_adjacency根据分区策略获得领域

def get_adjacency(self, strategy):
    valid_hop = range(0, self.max_hop + 1, self.dilation)
    adjacency = np.zeros((self.num_node, self.num_node))
    for hop in valid_hop:
        adjacency[self.hop_dis == hop] = 1
    normalize_adjacency = normalize_digraph(adjacency)

    if strategy == 'uniform':
        A = np.zeros((1, self.num_node, self.num_node))
        A[0] = normalize_adjacency
        self.A = A
    elif strategy == 'distance':
        A = np.zeros((len(valid_hop), self.num_node, self.num_node))
        for i, hop in enumerate(valid_hop):
            A[i][self.hop_dis == hop] = normalize_adjacency[self.hop_dis ==
                                                            hop]
        self.A = A
    elif strategy == 'spatial':
        A = []
        for hop in valid_hop:
            a_root = np.zeros((self.num_node, self.num_node))
            a_close = np.zeros((self.num_node, self.num_node))
            a_further = np.zeros((self.num_node, self.num_node))
            for i in range(self.num_node):
                for j in range(self.num_node):
                    if self.hop_dis[j, i] == hop:
                        if self.hop_dis[j, self.center] == self.hop_dis[i, self.center]:
                            a_root[j, i] = normalize_adjacency[j, i]
                        elif self.hop_dis[j, self.center] > self.hop_dis[i, self.center]:
                            a_close[j, i] = normalize_adjacency[j, i]
                        else:
                            a_further[j, i] = normalize_adjacency[j, i]
            if hop == 0:
                A.append(a_root)
            else:
                A.append(a_root + a_close)
                A.append(a_further)
        A = np.stack(A)
        self.A = A
    else:
        raise ValueError("Do Not Exist This Strategy")

首先是变量valid_hop,感觉作用不大,就是作为遍历索引…然后变量adjacency初始化为一个18x18,值为0的矩阵。在下面进行遍历,将连接节点之间设置为1,否则为0,得到节结果与图22一致。

下面的函数normalize_digraph将邻接矩阵中每个节点除以参加计算的节点数目来达到类似归一化的作用。

def normalize_digraph(A):
    Dl = np.sum(A, 0)
    num_node = A.shape[0]
    Dn = np.zeros((num_node, num_node))
    for i in range(num_node):
        if Dl[i] > 0:
            Dn[i, i] = Dl[i]**(-1)
    AD = np.dot(A, Dn)
    return AD

返回的结果如下:
在这里插入图片描述
完成上面的初始化过程,开始分区。这里采用的是spatial,因此就看这段代码:

最终得到的A有三个维度(3, 18, 18):

  1. 第一个维度是根节点本身,表示静止的运动特征
  2. 第二个维度是更靠近中心的邻居节点,向心运动的运动特征。
  3. 第三个维度表示空间位置上比根节点更远离整个骨架的邻居节点,离心运动的运动特征。
    在这里插入图片描述

1.5 源码

class Graph():
    """ The Graph to model the skeletons extracted by the openpose

    Args:
        strategy (string): must be one of the follow candidates
        - uniform: Uniform Labeling
        - distance: Distance Partitioning
        - spatial: Spatial Configuration
        For more information, please refer to the section 'Partition Strategies'
            in our paper (https://arxiv.org/abs/1801.07455).

        layout (string): must be one of the follow candidates
        - openpose: Is consists of 18 joints. For more information, please
            refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose#output
        - ntu-rgb+d: Is consists of 25 joints. For more information, please
            refer to https://github.com/shahroudy/NTURGB-D

        max_hop (int): the maximal distance between two connected nodes
        dilation (int): controls the spacing between the kernel points

    """

    def __init__(self,
                 layout='openpose',
                 strategy='uniform',
                 max_hop=1,
                 dilation=1):
        self.max_hop = max_hop
        self.dilation = dilation  # Distance Partitioning

        self.get_edge(layout)
        self.hop_dis = get_hop_distance(
            self.num_node, self.edge, max_hop=max_hop)
        self.get_adjacency(strategy)

    def __str__(self):
        return self.A

    def get_edge(self, layout):
        if layout == 'openpose':
            self.num_node = 18
            self_link = [(i, i) for i in range(self.num_node)]
            neighbor_link = [(4, 3), (3, 2), (7, 6), (6, 5), (13, 12), (12, 11),
                             (10, 9), (9, 8), (11, 5), (8, 2), (5, 1), (2, 1),
                             (0, 1), (15, 0), (14, 0), (17, 15), (16, 14)]
            self.edge = self_link + neighbor_link
            self.center = 1
        elif layout == 'ntu-rgb+d':
            self.num_node = 25
            self_link = [(i, i) for i in range(self.num_node)]
            neighbor_1base = [(1, 2), (2, 21), (3, 21), (4, 3), (5, 21),
                              (6, 5), (7, 6), (8, 7), (9, 21), (10, 9),
                              (11, 10), (12, 11), (13, 1), (14, 13), (15, 14),
                              (16, 15), (17, 1), (18, 17), (19, 18), (20, 19),
                              (22, 23), (23, 8), (24, 25), (25, 12)]
            neighbor_link = [(i - 1, j - 1) for (i, j) in neighbor_1base]
            self.edge = self_link + neighbor_link
            self.center = 21 - 1
        elif layout == 'ntu_edge':
            self.num_node = 24
            self_link = [(i, i) for i in range(self.num_node)]
            neighbor_1base = [(1, 2), (3, 2), (4, 3), (5, 2), (6, 5), (7, 6),
                              (8, 7), (9, 2), (10, 9), (11, 10), (12, 11),
                              (13, 1), (14, 13), (15, 14), (16, 15), (17, 1),
                              (18, 17), (19, 18), (20, 19), (21, 22), (22, 8),
                              (23, 24), (24, 12)]
            neighbor_link = [(i - 1, j - 1) for (i, j) in neighbor_1base]
            self.edge = self_link + neighbor_link
            self.center = 2
        # elif layout=='customer settings'
        #     pass
        else:
            raise ValueError("Do Not Exist This Layout.")

    def get_adjacency(self, strategy):
        valid_hop = range(0, self.max_hop + 1, self.dilation)
        adjacency = np.zeros((self.num_node, self.num_node))
        for hop in valid_hop:
            adjacency[self.hop_dis == hop] = 1
        normalize_adjacency = normalize_digraph(adjacency)

        if strategy == 'uniform':
            A = np.zeros((1, self.num_node, self.num_node))
            A[0] = normalize_adjacency
            self.A = A
        elif strategy == 'distance':
            A = np.zeros((len(valid_hop), self.num_node, self.num_node))
            for i, hop in enumerate(valid_hop):
                A[i][self.hop_dis == hop] = normalize_adjacency[self.hop_dis ==
                                                                hop]
            self.A = A
        elif strategy == 'spatial':
            A = []
            for hop in valid_hop:
                a_root = np.zeros((self.num_node, self.num_node))
                a_close = np.zeros((self.num_node, self.num_node))
                a_further = np.zeros((self.num_node, self.num_node))
                for i in range(self.num_node):
                    for j in range(self.num_node):
                        if self.hop_dis[j, i] == hop:
                            if self.hop_dis[j, self.center] == self.hop_dis[i, self.center]:
                                a_root[j, i] = normalize_adjacency[j, i]
                            elif self.hop_dis[j, self.center] > self.hop_dis[i, self.center]:
                                a_close[j, i] = normalize_adjacency[j, i]
                            else:
                                a_further[j, i] = normalize_adjacency[j, i]
                if hop == 0:
                    A.append(a_root)
                else:
                    A.append(a_root + a_close)
                    A.append(a_further)
            A = np.stack(A)
            self.A = A
        else:
            raise ValueError("Do Not Exist This Strategy")

现在有一个问题,邻接矩阵A做什么用的呢?必须往下面看。

2 forward/整体网络架构

接下来看看forward函数,这里面就是网络的处理:

def forward(self, x):

    # data normalization
    N, C, T, V, M = x.size()
    x = x.permute(0, 4, 3, 1, 2).contiguous()  # N, M, V, C, T
    x = x.view(N * M, V * C, T)
    x = self.data_bn(x)  # to (8, 54, 150)
    x = x.view(N, M, V, C, T)  # to (4, 2, 18, 3, 300)
    x = x.permute(0, 1, 3, 4, 2).contiguous()  # N, M, C, T, V
    x = x.view(N * M, C, T, V)  # to (8, 3, 300, 18)

    # forwad
    for gcn, importance in zip(self.st_gcn_networks, self.edge_importance):
        x, _ = gcn(x, self.A * importance)

    # global pooling
    x = F.avg_pool2d(x, x.size()[2:])
    x = x.view(N, M, -1, 1, 1).mean(dim=1)

    # prediction
    x = self.fcn(x)
    x = x.view(x.size(0), -1)

    return x

输入:x.shape=[N, C, T, V, M],含义如下:

N : Batch_Size  视频个数
C : 3           输入数据的通道数量 (X,Y,S)代表一个点的信息 (位置x,y + 置信度)
T : 300         一个视频的帧数 paper规定为150
V : 18          根据不同的骨骼获取的节点数而定,coco为18个节点
M : 2           paper中将人数限定在最大2个人

首先进行了一次BN操作和一系列维度变换的操作后,进入st-gcn网络的特征层.shape=(8, 3, 150, 18)之后遍历st-gcn模块,输出的结果.shape=(8, 256, 38, 18),这部分做了什么后面详细总结一下。最后进行一次最大池化层,并对一个视频中的人数特征取一次平均,得到结果.shape=(4, 256, 1, 1)。然后再通过一次卷积层进行分类,return 结果(4, 400),得到对所有动作的预测。

3 st-gcn

st-gcn类一共定义了10次(论文中说9个st-gcn模块叠加是因为作者没把第一个看作st-gcn模块),代码如下:

        self.st_gcn_networks = nn.ModuleList((
            st_gcn(in_channels, 64, kernel_size, 1, residual=False, **kwargs0),  # in_channel=3, kernel_size=(9, 3)
            st_gcn(64, 64, kernel_size, 1, **kwargs),
            st_gcn(64, 64, kernel_size, 1, **kwargs),
            st_gcn(64, 64, kernel_size, 1, **kwargs),
            st_gcn(64, 128, kernel_size, 2, **kwargs),
            st_gcn(128, 128, kernel_size, 1, **kwargs),
            st_gcn(128, 128, kernel_size, 1, **kwargs),
            st_gcn(128, 256, kernel_size, 2, **kwargs),
            st_gcn(256, 256, kernel_size, 1, **kwargs),
            st_gcn(256, 256, kernel_size, 1, **kwargs),
        ))

每一个st-gcn模块都是gcn和tcn的叠加,并应用了残差结构forward代码如下:

def forward(self, x, A):

    res = self.residual(x)
    x, A = self.gcn(x, A)
    x = self.tcn(x) + res

    return self.relu(x), A

3.1 residual

if not residual:
    self.residual = lambda x: 0

elif (in_channels == out_channels) and (stride == 1):
    self.residual = lambda x: x

else:
    self.residual = nn.Sequential(
        nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size=1,
            stride=(stride, 1)),
        nn.BatchNorm2d(out_channels),
    )

意思大概是:

  1. 当residual如果是False,就不适用残差结构。

  2. 当residual为True,且in_channel=out_channel,stride=1时

在这里插入图片描述

  1. 当residual为True,且不满足in_channel=out_channel或stride=1时
    在这里插入图片描述

3.2 gcn

filepath = ./st_gcn/net/utils/stgcn.py

3.2.1 init

首先看看在这里需要准备什么

def __init__(self,
             in_channels,
             out_channels,
             kernel_size,
             t_kernel_size=1,
             t_stride=1,
             t_padding=0,
             t_dilation=1,
             bias=True):
    super().__init__()

    self.kernel_size = kernel_size  # 3
    self.conv = nn.Conv2d(
        in_channels,
        out_channels * kernel_size,  # 这里不太懂,怎么理解
        kernel_size=(t_kernel_size, 1),  # (1, 1)
        padding=(t_padding, 0),
        stride=(t_stride, 1),
        dilation=(t_dilation, 1),  # 空洞
        bias=bias)

kernel_size=(3, 1)相当于每次卷积操作,使用同一时间上的三个不同节点计算。

问题1:这里的out_channel*kernel_size网络有的解释是这样输出有三种卷积核,对应了空间上的卷积操作。但是这么应该是用1x1卷积计算整个特征层操作,参数是一致的,还不太理解。

3.2.2 forward

def forward(self, x, A):
    assert A.size(0) == self.kernel_size

    x = self.conv(x)

    n, kc, t, v = x.size()
    # (N*M, out_channel*t_kernel_size, t, v) to (N*M, t_kernel_size, out_channel, t, v)
    # 举一个例子(8, 192, 150, 18) to (8, 3, 64, 150, 18)
    x = x.view(n, self.kernel_size, kc//self.kernel_size, t, v)
    # A.shape=(t_kernel_size, v, v)
    x = torch.einsum('nkctv,kvw->nctw', (x, A))

    return x.contiguous(), A

其中x = torch.einsum('nkctv,kvw->nctw', (x, A))相当于点成(n, c, t, (v, k) ) x ( (k, v), w)。

函数解释:https://zhuanlan.zhihu.com/p/434232512

这里对应的原理是https://www.bilibili.com/read/cv17038755/

3.3 tcn

self.tcn = nn.Sequential(
    nn.BatchNorm2d(out_channels),
    nn.ReLU(inplace=True),
    nn.Conv2d(
        out_channels,
        out_channels,
        (kernel_size[0], 1),  # (9, 1)
        (stride, 1),
        padding,
    ),
    nn.BatchNorm2d(out_channels),
    nn.Dropout(dropout, inplace=True),
)

kernel_size=(3, 1)相当于每次卷积操作,9个不同时间上同一节点进行计算。

函数解释:https://zhuanlan.zhihu.com/p/434232512

这里对应的原理是https://www.bilibili.com/read/cv17038755/

3.3 tcn

self.tcn = nn.Sequential(
    nn.BatchNorm2d(out_channels),
    nn.ReLU(inplace=True),
    nn.Conv2d(
        out_channels,
        out_channels,
        (kernel_size[0], 1),  # (9, 1)
        (stride, 1),
        padding,
    ),
    nn.BatchNorm2d(out_channels),
    nn.Dropout(dropout, inplace=True),
)

kernel_size=(3, 1)相当于每次卷积操作,9个不同时间上同一节点进行计算。

交通流预测是指利用数据分析方法对交通网络中的车辆流量进行预测和调度的过程。而ST-GCN(Spatio-Temporal Graph Convolutional Networks)则是一种针对时空图网络的深度学习方法。以下是针对ST-GCN代码的简要解释: ST-GCN代码是基于Python开发的,其主要功能是实现对时空图网络数据的预测和训练。该代码主要包括以下几个部分: 1. 数据处理:ST-GCN首先需要对原始交通流量数据进行处理和预处理。代码中会包括数据读取、数据清洗、数据规范化等操作,以确保数据的准确性和一致性。 2. 模型设计:ST-GCN采用了时空图卷积网络作为核心模型。代码中会定义和实现时空图网络的结构,包括网络层数、节点连接方式、特征提取方式等。这些节点和边的信息被表示为二维矩阵,方便进行卷积操作。 3. 训练和优化:ST-GCN通过调整网络参数来进行训练和优化。代码中包括损失函数的定义、参数初始化、梯度下降等操作,以最大程度地拟合原始数据,提高预测准确度。 4. 预测:代码还包括预测功能,用于对输入数据进行预测和推断。通过输入当前的交通流量数据,ST-GCN会输出预测结果,即未来一段时间内的车辆流量分布。 总之,ST-GCN代码是一个基于时空图卷积网络的交通流预测的实现工具。通过编写和调试这些代码,我们可以更好地理解和应用深度学习方法来处理和预测交通流量数据。同时,还可以根据实际需求对代码进行自定义和扩展,以提高预测效果和应用性能。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

20271023

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值