PyTorch实现卷积神经网络CNN

一、卷积神经网络CNN

二、代码实现(PyTorch)

1. 导入依赖库

import torch
from torch import nn, optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
  • nn:包含了torch已经准备好的层,激活函数、全连接层等

  • optim:提供了神经网络的一系列优化算法,如 SGD、Adam 等

  • datasets:提供常用的数据集,如 MNIST(本次使用)、CIFAR10/100、ImageNet、COCO 等

  • DataLoder:装载上面提到的数据集

2. 准备数据集

        这里使用MNIST数据集,它是一个大型手写数字数据库(包含0~9十个数字),原始的这两个数据集由128×128像素的黑白图像组成。LeCun等人将其进行归一化和尺寸调整后得到的是28×28的灰度图像。

        MNIST数据集总共包含两个子数据集:一个训练数据集(train_dataset)和一个测试数据集(test_dataset)。它们分别包含了60K和10K的28×28的灰度图像。代码如下:

# 训练集
train_dataset = datasets.MNIST(root='./',
                               train=True,
                               transform=transforms.ToTensor(),  # 数据转换为张量格式
                               download=True)
# 测试集
test_dataset = datasets.MNIST(root='./',
               
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值