- 文为「365天深度学习训练营」内部文章
- 参考本文所写文章,请在文章开头带上「🔗 声明」
1. 设置GPU
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
tf.config.set_visible_devices([gpu0],"GPU")
2. 导入数据
import os,PIL,pathlib
import matplotlib.pyplot as plt
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers,models
data_dir = r'E:/T3/diwutian/weather_photos'
data_dir = pathlib.Path(data_dir)
3.查看数据
image_count = len(list(data_dir.glob('*/*.jpg')))
print("图片总数为:",image_count)
图片总数为: 1125
roses = list(data_dir.glob('sunrise/*.jpg'))
PIL.Image.open(str(roses[0]))
二.数据预处理
1.加载数据
batch_size = 32
img_height = 180
img_width = 180
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.youkuaiyun.com/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
Found 1125 files belonging to 4 classes. Using 900 files for training.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.youkuaiyun.com/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
Found 1125 files belonging to 4 classes. Using 225 files for validation.
class_names = train_ds.class_names
print(class_names)
['cloudy', 'rain', 'shine', 'sunrise'] 2.可视化数据
plt.figure(figsize=(20, 10))
for images, labels in train_ds.take(1):
for i in range(20):
ax = plt.subplot(5, 10, i + 1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(class_names[labels[i]])
plt.axis("off")
for image_batch, labels_batch in train_ds:
print(image_batch.shape)
print(labels_batch.shape)
break
(32, 180, 180, 3) (32,)
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
num_classes = 4
"""
关于卷积核的计算不懂的可以参考文章:https://blog.youkuaiyun.com/qq_38251616/article/details/114278995
layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
在上一篇文章花朵识别中,训练准确率与验证准确率相差巨大就是由于模型过拟合导致的
关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.youkuaiyun.com/article/details/115826689
"""
model = models.Sequential([
layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3
layers.AveragePooling2D((2, 2)), # 池化层1,2*2采样
layers.Conv2D(32, (3, 3), activation='relu'), # 卷积层2,卷积核3*3
layers.AveragePooling2D((2, 2)), # 池化层2,2*2采样
layers.Conv2D(64, (3, 3), activation='relu'), # 卷积层3,卷积核3*3
layers.Dropout(0.3), # 让神经元以一定的概率停止工作,防止过拟合,提高模型的泛化能力。
layers.Flatten(), # Flatten层,连接卷积层与全连接层
layers.Dense(128, activation='relu'), # 全连接层,特征进一步提取
layers.Dense(num_classes) # 输出层,输出预期结果
])
model.summary() # 打印网络结构
WARNING:tensorflow:From D:\dl\envs\pytorch_gpu\lib\site-packages\keras\src\backend.py:873: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead. Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= rescaling (Rescaling) (None, 180, 180, 3) 0 conv2d (Conv2D) (None, 178, 178, 16) 448 average_pooling2d (Average (None, 89, 89, 16) 0 Pooling2D) conv2d_1 (Conv2D) (None, 87, 87, 32) 4640 average_pooling2d_1 (Avera (None, 43, 43, 32) 0 gePooling2D) conv2d_2 (Conv2D) (None, 41, 41, 64) 18496 dropout (Dropout) (None, 41, 41, 64) 0 flatten (Flatten) (None, 107584) 0 dense (Dense) (None, 128) 13770880 dense_1 (Dense) (None, 4) 516 ================================================================= Total params: 13794980 (52.62 MB) Trainable params: 13794980 (52.62 MB) Non-trainable params: 0 (0.00 Byte) _________________________________________________________________
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=0.001)
model.compile(optimizer=opt,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
epochs = 10
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs
)
Epoch 1/10 WARNING:tensorflow:From D:\dl\envs\pytorch_gpu\lib\site-packages\keras\src\utils\tf_utils.py:492: The name tf.ragged.RaggedTensorValue is deprecated. Please use tf.compat.v1.ragged.RaggedTensorValue instead. WARNING:tensorflow:From D:\dl\envs\pytorch_gpu\lib\site-packages\keras\src\engine\base_layer_utils.py:384: The name tf.executing_eagerly_outside_functions is deprecated. Please use tf.compat.v1.executing_eagerly_outside_functions instead. 29/29 [==============================] - 4s 94ms/step - loss: 1.0887 - accuracy: 0.6056 - val_loss: 0.5908 - val_accuracy: 0.7644 Epoch 2/10 29/29 [==============================] - 2s 77ms/step - loss: 0.5110 - accuracy: 0.8111 - val_loss: 0.5650 - val_accuracy: 0.7600 Epoch 3/10 29/29 [==============================] - 2s 75ms/step - loss: 0.4025 - accuracy: 0.8533 - val_loss: 0.5466 - val_accuracy: 0.7867 Epoch 4/10 29/29 [==============================] - 2s 74ms/step - loss: 0.3344 - accuracy: 0.8878 - val_loss: 0.5188 - val_accuracy: 0.8000 Epoch 5/10 29/29 [==============================] - 2s 74ms/step - loss: 0.3307 - accuracy: 0.8811 - val_loss: 0.3947 - val_accuracy: 0.8311 Epoch 6/10 29/29 [==============================] - 2s 75ms/step - loss: 0.2035 - accuracy: 0.9278 - val_loss: 0.5656 - val_accuracy: 0.8444 Epoch 7/10 29/29 [==============================] - 2s 76ms/step - loss: 0.1720 - accuracy: 0.9489 - val_loss: 0.3792 - val_accuracy: 0.8267 Epoch 8/10 29/29 [==============================] - 2s 74ms/step - loss: 0.1591 - accuracy: 0.9456 - val_loss: 0.4851 - val_accuracy: 0.8356 Epoch 9/10 29/29 [==============================] - 2s 75ms/step - loss: 0.1079 - accuracy: 0.9633 - val_loss: 0.6325 - val_accuracy: 0.8044 Epoch 10/10 29/29 [==============================] - 2s 75ms/step - loss: 0.1137 - accuracy: 0.9633 - val_loss: 0.5277 - val_accuracy: 0.8311
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(epochs)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
收获:在加载数据时因为有中文路径,