第T2周:彩色图片分类

  • 文为「365天深度学习训练营」内部文章
  • 参考本文所写文章,请在文章开头带上「🔗 声明」
  • 1.设置GPU
  • import tensorflow as tf
    gpus = tf.config.list_physical_devices("GPU")
    
    if gpus:
        gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
        tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
        tf.config.set_visible_devices([gpu0],"GPU")

    2.导入数据

  • import tensorflow as tf
    from tensorflow.keras import datasets, layers, models
    import matplotlib.pyplot as plt
    
    (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
    Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
    170498071/170498071 [==============================] - 747s 4us/step
  • # 将像素的值标准化至0到1的区间内。
    train_images, test_images = train_images / 255.0, test_images / 255.0
    
    train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

    ((50000, 32, 32, 3), (10000, 32, 32, 3), (50000, 1), (10000, 1))

  • class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer','dog', 'frog', 'horse', 'ship', 'truck']
    
    plt.figure(figsize=(20,10))
    for i in range(20):
        plt.subplot(5,10,i+1)
        plt.xticks([])
        plt.yticks([])
        plt.grid(False)
        plt.imshow(train_images[i], cmap=plt.cm.binary)
        plt.xlabel(class_names[train_labels[i][0]])
    plt.show()

    model = models.Sequential([
        layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)), #卷积层1,卷积核3*3
        layers.MaxPooling2D((2, 2)),                   #池化层1,2*2采样
        layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层2,卷积核3*3
        layers.MaxPooling2D((2, 2)),                   #池化层2,2*2采样
        layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层3,卷积核3*3
        
        layers.Flatten(),                      #Flatten层,连接卷积层与全连接层
        layers.Dense(64, activation='relu'),   #全连接层,特征进一步提取
        layers.Dense(10)                       #输出层,输出预期结果
    ])
    
    model.summary()  # 打印网络结构
    WARNING:tensorflow:From D:\dl\envs\pytorch_gpu\lib\site-packages\keras\src\backend.py:873: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.
    
    WARNING:tensorflow:From D:\dl\envs\pytorch_gpu\lib\site-packages\keras\src\layers\pooling\max_pooling2d.py:161: The name tf.nn.max_pool is deprecated. Please use tf.nn.max_pool2d instead.
    
    Model: "sequential"
    _________________________________________________________________
     Layer (type)                Output Shape              Param #   
    =================================================================
     conv2d (Conv2D)             (None, 30, 30, 32)        896       
                                                                     
     max_pooling2d (MaxPooling2  (None, 15, 15, 32)        0         
     D)                                                              
                                                                     
     conv2d_1 (Conv2D)           (None, 13, 13, 64)        18496     
                                                                     
     max_pooling2d_1 (MaxPoolin  (None, 6, 6, 64)          0         
     g2D)                                                            
                                                                     
     conv2d_2 (Conv2D)           (None, 4, 4, 64)          36928     
                                                                     
     flatten (Flatten)           (None, 1024)              0         
                                                                     
     dense (Dense)               (None, 64)                65600     
                                                                     
     dense_1 (Dense)             (None, 10)                650       
                                                                     
    =================================================================
    Total params: 122570 (478.79 KB)
    Trainable params: 122570 (478.79 KB)
    Non-trainable params: 0 (0.00 Byte)
    _________________________________________________________________
  • model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                  metrics=['accuracy'])

    model.compile(optimizer='adam',

    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

    metrics=['accuracy'])

    WARNING:tensorflow:From D:\dl\envs\pytorch_gpu\lib\site-packages\keras\src\optimizers\__init__.py:309: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.
  • history = model.fit(train_images, train_labels, epochs=10, 
                        validation_data=(test_images, test_labels))
    Epoch 1/10
    WARNING:tensorflow:From D:\dl\envs\pytorch_gpu\lib\site-packages\keras\src\utils\tf_utils.py:492: The name tf.ragged.RaggedTensorValue is deprecated. Please use tf.compat.v1.ragged.RaggedTensorValue instead.
    
    WARNING:tensorflow:From D:\dl\envs\pytorch_gpu\lib\site-packages\keras\src\engine\base_layer_utils.py:384: The name tf.executing_eagerly_outside_functions is deprecated. Please use tf.compat.v1.executing_eagerly_outside_functions instead.
    
    1563/1563 [==============================] - 7s 4ms/step - loss: 1.5403 - accuracy: 0.4390 - val_loss: 1.2682 - val_accuracy: 0.5355
    Epoch 2/10
    1563/1563 [==============================] - 6s 4ms/step - loss: 1.1611 - accuracy: 0.5908 - val_loss: 1.1016 - val_accuracy: 0.6100
    Epoch 3/10
    1563/1563 [==============================] - 6s 4ms/step - loss: 1.0091 - accuracy: 0.6465 - val_loss: 0.9856 - val_accuracy: 0.6553
    Epoch 4/10
    1563/1563 [==============================] - 6s 4ms/step - loss: 0.9082 - accuracy: 0.6832 - val_loss: 0.9478 - val_accuracy: 0.6706
    Epoch 5/10
    1563/1563 [==============================] - 6s 4ms/step - loss: 0.8336 - accuracy: 0.7077 - val_loss: 0.8741 - val_accuracy: 0.6900
    Epoch 6/10
    1563/1563 [==============================] - 7s 4ms/step - loss: 0.7710 - accuracy: 0.7303 - val_loss: 0.9035 - val_accuracy: 0.6874
    Epoch 7/10
    1563/1563 [==============================] - 7s 4ms/step - loss: 0.7231 - accuracy: 0.7475 - val_loss: 0.8902 - val_accuracy: 0.6953
    Epoch 8/10
    1563/1563 [==============================] - 7s 4ms/step - loss: 0.6778 - accuracy: 0.7614 - val_loss: 0.8532 - val_accuracy: 0.7081
    Epoch 9/10
    1563/1563 [==============================] - 7s 4ms/step - loss: 0.6401 - accuracy: 0.7744 - val_loss: 0.8627 - val_accuracy: 0.7107
    Epoch 10/10
    1563/1563 [==============================] - 7s 4ms/step - loss: 0.5973 - accuracy: 0.7918 - val_loss: 0.8672 - val_accuracy: 0.7102
  • plt.imshow(test_images[1])

  • import numpy as np
    
    pre = model.predict(test_images)
    print(class_names[np.argmax(pre[1])])
    313/313 [==============================] - 1s 2ms/step
    ship
  • import matplotlib.pyplot as plt
    
    plt.plot(history.history['accuracy'], label='accuracy')
    plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
    plt.xlabel('Epoch')
    plt.ylabel('Accuracy')
    plt.ylim([0.5, 1])
    plt.legend(loc='lower right')
    plt.show()
    
    test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)

  • 313/313 - 1s - loss: 0.8672 - accuracy: 0.7102 - 562ms/epoch - 2ms/step
  • print(test_acc)
    0.7102000117301941
  • 心得体会
  • 构建CNN网络后 深入了解了CNN的整个网络架构 了解了划分数据集的相关代码 更加深入了解了深度学习 下一周会继续坚持 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值