- 文为「365天深度学习训练营」内部文章
- 参考本文所写文章,请在文章开头带上「🔗 声明」
- 1.设置GPU
-
import tensorflow as tf gpus = tf.config.list_physical_devices("GPU") if gpus: gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用 tf.config.set_visible_devices([gpu0],"GPU")
2.导入数据
-
import tensorflow as tf from tensorflow.keras import datasets, layers, models import matplotlib.pyplot as plt (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz 170498071/170498071 [==============================] - 747s 4us/step
-
# 将像素的值标准化至0到1的区间内。 train_images, test_images = train_images / 255.0, test_images / 255.0 train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
((50000, 32, 32, 3), (10000, 32, 32, 3), (50000, 1), (10000, 1))
-
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer','dog', 'frog', 'horse', 'ship', 'truck'] plt.figure(figsize=(20,10)) for i in range(20): plt.subplot(5,10,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i][0]]) plt.show()
model = models.Sequential([ layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)), #卷积层1,卷积核3*3 layers.MaxPooling2D((2, 2)), #池化层1,2*2采样 layers.Conv2D(64, (3, 3), activation='relu'), #卷积层2,卷积核3*3 layers.MaxPooling2D((2, 2)), #池化层2,2*2采样 layers.Conv2D(64, (3, 3), activation='relu'), #卷积层3,卷积核3*3 layers.Flatten(), #Flatten层,连接卷积层与全连接层 layers.Dense(64, activation='relu'), #全连接层,特征进一步提取 layers.Dense(10) #输出层,输出预期结果 ]) model.summary() # 打印网络结构
WARNING:tensorflow:From D:\dl\envs\pytorch_gpu\lib\site-packages\keras\src\backend.py:873: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead. WARNING:tensorflow:From D:\dl\envs\pytorch_gpu\lib\site-packages\keras\src\layers\pooling\max_pooling2d.py:161: The name tf.nn.max_pool is deprecated. Please use tf.nn.max_pool2d instead. Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d (Conv2D) (None, 30, 30, 32) 896 max_pooling2d (MaxPooling2 (None, 15, 15, 32) 0 D) conv2d_1 (Conv2D) (None, 13, 13, 64) 18496 max_pooling2d_1 (MaxPoolin (None, 6, 6, 64) 0 g2D) conv2d_2 (Conv2D) (None, 4, 4, 64) 36928 flatten (Flatten) (None, 1024) 0 dense (Dense) (None, 64) 65600 dense_1 (Dense) (None, 10) 650 ================================================================= Total params: 122570 (478.79 KB) Trainable params: 122570 (478.79 KB) Non-trainable params: 0 (0.00 Byte) _________________________________________________________________
-
model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
WARNING:tensorflow:From D:\dl\envs\pytorch_gpu\lib\site-packages\keras\src\optimizers\__init__.py:309: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.
-
history = model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))
Epoch 1/10 WARNING:tensorflow:From D:\dl\envs\pytorch_gpu\lib\site-packages\keras\src\utils\tf_utils.py:492: The name tf.ragged.RaggedTensorValue is deprecated. Please use tf.compat.v1.ragged.RaggedTensorValue instead. WARNING:tensorflow:From D:\dl\envs\pytorch_gpu\lib\site-packages\keras\src\engine\base_layer_utils.py:384: The name tf.executing_eagerly_outside_functions is deprecated. Please use tf.compat.v1.executing_eagerly_outside_functions instead. 1563/1563 [==============================] - 7s 4ms/step - loss: 1.5403 - accuracy: 0.4390 - val_loss: 1.2682 - val_accuracy: 0.5355 Epoch 2/10 1563/1563 [==============================] - 6s 4ms/step - loss: 1.1611 - accuracy: 0.5908 - val_loss: 1.1016 - val_accuracy: 0.6100 Epoch 3/10 1563/1563 [==============================] - 6s 4ms/step - loss: 1.0091 - accuracy: 0.6465 - val_loss: 0.9856 - val_accuracy: 0.6553 Epoch 4/10 1563/1563 [==============================] - 6s 4ms/step - loss: 0.9082 - accuracy: 0.6832 - val_loss: 0.9478 - val_accuracy: 0.6706 Epoch 5/10 1563/1563 [==============================] - 6s 4ms/step - loss: 0.8336 - accuracy: 0.7077 - val_loss: 0.8741 - val_accuracy: 0.6900 Epoch 6/10 1563/1563 [==============================] - 7s 4ms/step - loss: 0.7710 - accuracy: 0.7303 - val_loss: 0.9035 - val_accuracy: 0.6874 Epoch 7/10 1563/1563 [==============================] - 7s 4ms/step - loss: 0.7231 - accuracy: 0.7475 - val_loss: 0.8902 - val_accuracy: 0.6953 Epoch 8/10 1563/1563 [==============================] - 7s 4ms/step - loss: 0.6778 - accuracy: 0.7614 - val_loss: 0.8532 - val_accuracy: 0.7081 Epoch 9/10 1563/1563 [==============================] - 7s 4ms/step - loss: 0.6401 - accuracy: 0.7744 - val_loss: 0.8627 - val_accuracy: 0.7107 Epoch 10/10 1563/1563 [==============================] - 7s 4ms/step - loss: 0.5973 - accuracy: 0.7918 - val_loss: 0.8672 - val_accuracy: 0.7102
-
plt.imshow(test_images[1])
-
import numpy as np pre = model.predict(test_images) print(class_names[np.argmax(pre[1])])
313/313 [==============================] - 1s 2ms/step ship
-
import matplotlib.pyplot as plt plt.plot(history.history['accuracy'], label='accuracy') plt.plot(history.history['val_accuracy'], label = 'val_accuracy') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.ylim([0.5, 1]) plt.legend(loc='lower right') plt.show() test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
-
313/313 - 1s - loss: 0.8672 - accuracy: 0.7102 - 562ms/epoch - 2ms/step
-
print(test_acc)
0.7102000117301941
- 心得体会
- 构建CNN网络后 深入了解了CNN的整个网络架构 了解了划分数据集的相关代码 更加深入了解了深度学习 下一周会继续坚持
第T2周:彩色图片分类
最新推荐文章于 2025-06-14 22:22:09 发布