手把手教你用 SQL 实现电商产品用户分析

本文通过实例解析了电商用户分析,包括数据表结构、关键指标如访问量、用户留存、漏斗分析和AARRR框架的应用,教你如何用SQL进行用户行为路径挖掘并指导决策。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者介绍

@吃饭第一名的 Claire

美国德克萨斯大学奥斯汀分校商学院硕士;

美国某物流公司数据分析师;

负责数据收集、清理、分析、建模、可视化等;

美剧重度爱好者,坚信美食能解决大部分问题的终极吃货;

“数据人创作者联盟”成员。

用户行为分析是互联网公司的核心分析指标。这个过程需要数据分析师通过海量交易数据,分析(新/老)用户在整个产品使用环节(随时间)的行为路径,从而发现异常值,探索出现异常的原因,进而减少用户流失、提升用户的产品参与度、最后帮助产品实现持续性营收。

注:这里的互联网产品可以是手机app、网站平台等各种SaaS(Software as a Service)产品,以下皆用“app”来代表以简化语言。

本文我们以电商平台的一组数据来深度剖析一下如何进行用户分析,有哪些指标要关注,分别说明了什么问题,这些数据结果又如何指导我们决策。本期文章分为 2 个模块:

注:为了更有效的凸显数据带给我们的洞察,不同模块采取了不同时段不同来源的数据集,所以数据前后不一致是正常的。

 

本文的目的是为了帮助大家搭建数据分析的思维,学习用 SQL 帮助实现分析,并通过可视化进行呈现和汇报。

注:全文符合 PostgreSQL 语法格式 

数据表(表名 events)

非常简单,5 个字段,每一行表示某 user 在某 date 某 hour 对某 item 做了某 behavior,其中 behavior 有 pv (浏览/点击)、fav(收藏)、cart(加入购物车)和 buy(下单支付)4 种。

整体统计分析

通常会涉及时间段,总天数,总记录数,总访问量,总用户数,购买用户数,平均日浏览量,平均日用户量,平均跳出率。

以下是 SQL 代码:

说明数据是从 2020 年 11 月 25 日至 2020 年 12 月 2 日。

我们要面对的是 8 天将近 90M 的数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值