作者介绍
@吃饭第一名的 Claire
美国德克萨斯大学奥斯汀分校商学院硕士;
美国某物流公司数据分析师;
负责数据收集、清理、分析、建模、可视化等;
美剧重度爱好者,坚信美食能解决大部分问题的终极吃货;
“数据人创作者联盟”成员。
用户行为分析是互联网公司的核心分析指标。这个过程需要数据分析师通过海量交易数据,分析(新/老)用户在整个产品使用环节(随时间)的行为路径,从而发现异常值,探索出现异常的原因,进而减少用户流失、提升用户的产品参与度、最后帮助产品实现持续性营收。
注:这里的互联网产品可以是手机app、网站平台等各种SaaS(Software as a Service)产品,以下皆用“app”来代表以简化语言。
本文我们以电商平台的一组数据来深度剖析一下如何进行用户分析,有哪些指标要关注,分别说明了什么问题,这些数据结果又如何指导我们决策。本期文章分为 2 个模块:
注:为了更有效的凸显数据带给我们的洞察,不同模块采取了不同时段不同来源的数据集,所以数据前后不一致是正常的。
本文的目的是为了帮助大家搭建数据分析的思维,学习用 SQL 帮助实现分析,并通过可视化进行呈现和汇报。
注:全文符合 PostgreSQL 语法格式
1 数据表(表名 events)
非常简单,5 个字段,每一行表示某 user 在某 date 某 hour 对某 item 做了某 behavior,其中 behavior 有 pv (浏览/点击)、fav(收藏)、cart(加入购物车)和 buy(下单支付)4 种。
2 整体统计分析
通常会涉及时间段,总天数,总记录数,总访问量,总用户数,购买用户数,平均日浏览量,平均日用户量,平均跳出率。
以下是 SQL 代码:
说明数据是从 2020 年 11 月 25 日至 2020 年 12 月 2 日。
我们要面对的是 8 天将近 90M 的数据。