R语言处理缺失数据(1)-mice

博客提及mice包支持的方法,且标签包含R语言,推测围绕R语言中mice包支持的方法展开相关信息技术内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#清空
rm(list=ls())
gc()

###生成模拟数据###
#生成100个随机数
library(magrittr)
set.seed(1)
asd<-rnorm(100, mean = 60, sd = 10) %>% round #平均60,标准差10
#将10个数随机替换为NA
NA_positions <- sample(1:100, 10)
asd[NA_positions] <- NA
#转化为data.frame
asd <-asd %>% data.frame
colnames(asd)<-"Age"
set.seed(1)
#添加其他相关数据
asd$Weight<-rnorm(100, mean = 75, sd = 5) %>% round
asd$BMI<-rnorm(100,mean=19,sd=4)
asd$Sex<-sample(0:1,100,replace=T) %>% as.factor
asd$death<-sample(0:1,100,replace=T) %>% as.factor
#查看数据分布
str(asd)
library(ggplot2)
ggplot(asd,aes(Age))+#数据集、坐标轴
  geom_histogram(color = "#000000", fill = "#0099F8")+#设置直方图线条颜色为黑色,设置直方图填充颜色为蓝色。
  ggtitle("数据分布") +#设置坐标轴名称
  theme_classic() +#将主题设置为经典风格
  theme(plot.title = element_text(size = 18))#将文本字号设置为18


###缺失情况观察###
library(VIM) 
aggr(asd,prop=T, numbers=F, sortVars=T)
library(mice)
md.pattern(asd)

###使用 MICE 包进行多重插补缺失值###
library(mice)
help(package="mice")
imp_asd<-mice(asd,method="rf",m=10,seed=123)#m代表插补几次
stripplot(imp_asd, cex=1, alpha=1)#可视化插补情况,蓝色是原始数据,红色是插补数据
densityplot(imp_asd)
result<-complete(imp_asd)

###拟合模型###
fit<-with(imp_asd,glm(death~Age+Weight+BMI+Sex,family = binomial))#生成10个回归模型
fit_combine<-pool(fit)#合并10个模型
summary(fit_combine)#总结

 

 

 

 备注:mice包支持的方法:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值