目录
2.2 Flan-T5: One Model for ALL Tasks
2.3.3 pipeline返回参数
一、引言
pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型
今天介绍NLP自然语言处理的第七篇:文生文(text2text-generation),在huggingface库内有3.3万个文本生成(text-generation)模型。
二、文生文(text2text-generation)
2.1 概述
文本生成(Text Generation)和文生文(Text-to-Text)两者都是自然语言处理(NLP)的子领域,但它们有不同的重点和应用场景。文本生成主要指的是自动生成文本内容的技术,例如:自动生成新闻报道、自动生成产品描述、自动生成聊天机器人的对话,这种技术通常使用深度学习模型来训练语言模型,从而能够根据输入的条件或提示生成新的文本内容。文生文则主要指的是将一段文本转换为另一段文本的技术,例如:机器翻译、文本摘要、风格转换,这种技术通常使用序列到序列(Seq2Seq)模型或变换器(Transformer)模型来训练语言模型,从而能够根据输入的文本生成新的文本内容。文本生成主要关注于自动生成文本内容,而文生文则主要关注于将一段文本转换为另一段文本。
2.2 Flan-T5: One Model for ALL Tasks
Flan-T5是Google最新的一篇工作,通过在超大规模的任务上对T5进行微调,让语言模型具备了极强的泛化性能,做到单个模型就可以在1800多个NLP任务上都能有很好的表现。这意味着模型一旦训练完毕,可以直接在几乎全部的NLP任务上直接使用,实现One model for ALL tasks,这就非常有诱惑力!
这里的Flan 指的是(Instruction finetuning ),即"基于指令的微调";T5是2019年Google发布的一个语言模型了。注意这里的语言模型可以进行任意的替换(需要有Decoder部分,所以不包括BERT这类纯Encoder语言模型),论文的核心贡献是提出一套多任务的微调方案(Flan),来极大提升语言模型的泛化性。
2.3 pipeline参数
2.3.1 pipeline对象实例化参数
- model(PreTrainedModel或TFPreTrainedModel)— 管道将使用其进行预测的模型。 对于 PyTorch,这需要从PreTrainedModel继承;对于 TensorFlow,这需要从TFPreTrainedModel继承。
- tokenizer ( PreTrainedTokenizer ) — 管道将使用 tokenizer 来为模型编码数据。此对象继承自 PreTrainedTokenizer。