一、写在前面
本文是《Dive-into-Deep-Learning》一书中文Pytorch版本的第一章,梯度。到目前为止的内容较为轻松,主要是对pytorch的一些基本操作和概念的熟悉过程。建议可以参阅《Pytorch官方文档》辅助学习。
二、自动求梯度
在深度学习中,我们经常需要对函数求梯度(gradient)。PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播。本节将介绍如何使用autograd包来进行自动求梯度的有关操作。
2.1 概念
上一节介绍的Tensor是这个包的核心类,如果将其属性.requires_grad设置为True,它将开始追踪(track)在其上的所有操作(这样就可以利用链式法则进行梯度传播了)。完成计算后,可以调用.backward()来完成所有梯度计算。此Tensor的梯度将累积到.grad属性中。
如果不想要被继续追踪,可以调用.detach()将其从追踪记录中分离出来,这样就可以防止将来的计算被追踪,这样梯度就传不过去了。此外,还可以用with torch.no_grad()将不想被追踪的操作代码块包裹起来,这种方法在评估模型的时候很常用,因为在评估模型时,我们并不需要计算可训练参数(requires_grad=True)的梯度。
Function是另外一个很重要的类。Tensor和Function互相结合就可以构建一个记录有整个计算过程的有向无环图(DAG)。每个Tensor都有一个.grad_fn属性,该属性即创建该Tensor的Function, 就是说该Tensor是不是通过某些运算得到的,若是,则grad_fn返回一个与这些运算相关的对象,否则是None。
下面通过一些例子来理解这些概念。
2.2 Tensor
创建一个Tensor并设置requires_grad=True:
x = torch.ones(2, 2, requires_grad=True)
print(x)
print(x.grad_fn)
输出:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
None
再做一下运算操作:
y = x + 2
print(y)
print(y.grad_fn)
输出:
tensor([[3., 3.],
[3., 3.]], grad_fn=<AddBackward>)
<AddBackward object at 0x1100477b8>
注意x是直接创建的,所以它没有grad_fn, 而y是通过一个加法操作创建的,所以它有一个为的grad_fn。
像x这种直接创建的称为叶子节点,叶子节点对应的grad_fn是None。
print(x.is_leaf, y.is_leaf) # True False
再来点复杂度运算操作:
快捷键目录标题文本样式列表链接代码片表格注脚注释自定义列表LaTeX 数学公式插入甘特图插入UML图插入Mermaid流程图插入Flowchart流程图插入类图
代码片复制
下面展示一些 内联代码片
。
// A code block
var foo = 'bar';
z = y * y * 3
out = z.mean()
print(z, out)
输出:
tensor([[27., 27.],
[27., 27.]], grad_fn=<MulBackward>) tensor(27., grad_fn=<MeanBackward1>)
通过.requires_grad_()来用in-place的方式改变requires_grad属性:
a = torch.randn(2, 2) # 缺失情况下默认 requires_grad = False
a = ((a * 3) / (a - 1))
print(a.requires_grad) # False
a.requires_grad_(True)
print(a.requires_grad) # True
b = (a * a).sum()
print(b.grad_fn)
输出:
False
True
<SumBackward0 object at 0x118f50cc0>
2.3 梯度
因为out是一个标量,所以调用backward()时不需要指定求导变量:
out.backward() # 等价于 out.backward(torch.tensor(1.))
我们来看看out关于x的梯度 d ( o u t ) d x \frac{d(out)}{dx} dxd(out):
print(x.grad)
tensor([[4.5000, 4.5000],
[4.5000, 4.5000]])
我们令out为 o o o , 因为 o = 1 4 ∑ i = 1 4 z i = 1 4 ∑ i = 1 4 3 ( x i + 2 ) 2 o=\frac14\sum_{i=1}^4z_i=\frac14\sum_{i=1}^43(x_i+2)^2 o=41i=1∑4zi=41i=1∑43(xi+2)2 所以 ∂ o ∂ x i ∣ x i = 1 = 9 2 = 4.5 \frac{\partial{o}}{\partial{x_i}}\bigr\rvert_{x_i=1}=\frac{9}{2}=4.5 ∂xi∂o∣