数值分析与算法 (1)

插值

拉格朗日 :

L n ( x i ) = y i , i = 0 , 1... n L_n(x_i) = y_i, i=0,1...n Ln(xi)=yi,i=0,1...n , 其中 L n L_n Ln ≤ n \leq n n次多项式

解答
L n ( x ) = l 0 ( x ) ⋅ y 0 + l 1 ( x ) ⋅ y 1 + . . . + l n ( x ) ⋅ y n l i ( x ) = w ( x ) w ′ ( x i ) ⋅ ( x − x i ) L_n(x) = l_0(x)\cdot y_0 + l_1(x)\cdot y_1 + ... + l_n(x)\cdot y_n \\ l_i(x) = \frac{w(x)}{w'(x_i)\cdot(x-x_i)} \\ Ln(x)=l0(x)y0+l1(x)y1+...+ln(x)ynli(x)=w(xi)(xxi)w(x)
其中
w ( x ) = ( x − x 0 ) ⋅ ( x − x 1 ) ⋅ . . . ( x − x n ) w ′ ( x i ) = ( x i − x 0 ) ⋅ ( x i − x i − 1 ) ⋅ . . . ( x i − x i + 1 ) ⋅ ( x i − x n ) w(x) = (x-x_0)\cdot(x-x_1)\cdot...(x-x_n) \\ w'(x_i) = (x_i-x_0)\cdot(x_i-x_{i-1})\cdot...(x_i-x_{i+1})\cdot(x_i-x_n) \\ w(x)=(xx0)(xx1)...(xxn)w(xi)=(xix0)(xixi1)...(xixi+1)(xixn)
方法误差
R n ( x ) ≤ ∣ f ( n + 1 ) ( η ) ( n + 1 ) ! w ( x ) ∣ ( p f ) : R n ( x ) = f ( x ) − L n ( x ) = K ( x ) ⋅ w ( x ) l e t   ϕ ( t ) = f ( t ) − L n ( t ) − R n ( t ) ϕ ( x ) = ϕ ( x 0 ) = . . . = ϕ ( x n ) = 0 ϕ 有 n + 2 个 零 点 ⇒ ϕ ( n + 1 ) 有 1 个 零 点 ⇒ ϕ ( n + 1 ) ( η ) = f ( n + 1 ) ( η ) − K ( x ) ⋅ ( n + 1 ) ! K ( x ) = f ( n + 1 ) ( η ) ( n + 1 ) ! , 又   R ( x ) = K ( x ) ⋅ w ( x ) R_n(x) \leq |\frac{f^{(n+1)}(\eta)}{(n+1)!}w(x)| \\ (pf): R_n(x) = f(x) - L_n(x) = K(x)\cdot w(x)\\ let\space \phi(t) = f(t) - L_n(t) - R_n(t) \\ \phi(x)=\phi(x_0)=...=\phi(x_n) = 0 \\ \phi有n+2个零点 \Rightarrow \phi^{(n+1)}有1个零点 \Rightarrow \phi^{(n+1)}(\eta)=f^{(n+1)}(\eta)-K(x)\cdot(n+1)! \\ K(x) = \frac{f^{(n+1)}(\eta)}{(n+1)!}, 又\space R(x) = K(x)\cdot w(x) Rn(x)(n+1)!f(n+1)(η)w(x)(pf):Rn(x)=f(x)Ln(x)=K(x)w(x)let ϕ(t)=f(t)Ln(t)Rn(t)ϕ(x)=ϕ(x0)=...=ϕ(xn)=0ϕn+2ϕ(n+1)1ϕ(n+1)(η)=f(n+1)(η)K(x)(n+1)!K(x)=(n+1)!f(n+1)(η), R(x)=K(x)w(x)
例题: 函数 s i n ( x ) sin(x) sin(x),步长 h h h,任给两点求方法误差
R 1 ( x ) ≤ m a x x k ≤ x ≤ x k + 1 ∣ f ′ ′ ( x ) 2 ! w ( x ) ∣ ≤ ∣ 1 2 ⋅ h 2 4 ∣ ≤ h 2 8 R_1(x) \leq max_{x_k\leq x\leq x_{k+1}}|\frac{f''(x)}{2!}w(x)| \leq |\frac{1}{2}\cdot\frac{h^2}{4}| \leq \frac{h^2}{8} R1(x)maxxkxxk+12!f(x)w(x)214h28h2

牛顿插值

k阶均差 :
定 义 : f [ x 0 , . . . , x k ] = f [ x 0 , . . . , x k − 2 , x k ] − f [ x 0 , . . . , x k − 1 ] x k − x k − 1 性 质 1 : f [ x 0 , x 1 . . . , x k ] = f [ x 1 , x 0 . . . , x k ] = f [ x k , . . . , x 1 , x 0 ] 性 质 2 : f [ x 0 , . . . , x k ] = f [ x 0 , . . . , x k − 1 ] − f [ x 1 , . . . , x k ] x k − x 0 性 质 3 : f [ x 0 , . . . , x k ] = f ( n ) ( η ) n ! 定义: f[x_0,...,x_k] = \frac{f[x_0,...,x_{k-2},x_k]-f[x_0,...,x_{k-1}]}{x_k-x_{k-1}} \\ 性质1: f[x_0,x_1...,x_k] = f[x_1,x_0...,x_k] = f[x_k,...,x_1,x_0] \\ 性质2: f[x_0,...,x_k] = \frac{f[x_0,...,x_{k-1}]-f[x_1,...,x_k]}{x_k-x_0} \\ 性质3: f[x_0,...,x_k] = \frac{f^{(n)}(\eta)}{n!} :f[x0,...,xk]=xkxk1f[x0,...,xk2,xk]f[x0,...,xk1]1:f[x0,x1...,xk]=f[x1,x0...,xk]=f[xk,...,x1,x0]2:f[x0,...,xk]=xkx0f[x0,...,xk1]f[x1,...,xk]3:f[x0,...,xk]=n!f(n)(η)
证明(性质三): (第二个等号成立是因为唯一性)
R n ( x ) = f ( x ) − P n ( x ) = f ( n ) ( η ) n ! w ( x ) = f [ x 0 , . . . , x k ] ⋅ w ( x ) R_n(x) = f(x)-P_n(x) = \frac{f^{(n)}(\eta)}{n!}w(x) = f[x_0,...,x_k]\cdot w(x) Rn(x)=f(x)Pn(x)=n!f(n)(η)w(x)=f[x0,...,xk]w(x)

插值公式
f ( x ) = f ( x 0 ) + f [ x 0 , x 1 ] ( x − x 0 ) + f [ x 0 , x 1 , x 2 ] ( x − x 0 ) ( x − x 1 ) + f [ x 0 , . . . , x n ] ( x − x 0 ) ⋅ ⋅ ⋅ ( x − x n − 1 ) f(x) = f(x_0) + f[x_0, x_1](x-x_0) + f[x_0, x_1, x_2](x-x_0)(x-x_1) + f[x_0,...,x_n](x-x_0)\cdot\cdot\cdot(x-x_{n-1}) f(x)=f(x0)+f[x0,x1](xx0)+f[x0,x1,x2](xx0)(xx1)+f[x0,...,xn](xx0)(xxn1)

等距牛顿插值
f [ x k , x k + 1 , . . . , x k + m ] = 1 m ! 1 h m Δ m f k = f ( n ) ( η ) n ! Δ n f k = Δ n − 1 f k + 1 − Δ n − 1 f k f[x_k,x_{k+1},...,x_{k+m}] = \frac{1}{m!} \frac{1}{h^m}\Delta^m f_k = \frac{f^{(n)}(\eta)}{n!} \\ \Delta^n f_k = \Delta^{n-1}f_{k+1} - \Delta^{n-1}f_k f[xk,xk+1,...,xk+m]=m!1hm1Δmfk=n!f(n)(η)Δnfk=Δn1fk+1Δn1fk

f ( x 0 + t h ) = f 0 + t Δ f 0 + t ( t − 1 ) 2 ! Δ 2 f 0 + . . . + t ( t − 1 ) . . . ( t − n + 1 ) n ! Δ n f 0 f(x_0+th) = f_0 + t\Delta f_0 + \frac{t(t-1)}{2!}\Delta^2f_0 +...+ \frac{t(t-1)...(t-n+1)}{n!}\Delta^nf_0 f(x0+th)=f0+tΔf0+2!t(t1)Δ2f0+...+n!t(t1)...(tn+1)Δnf0

埃米尔特插值

第一种: $f(x_0) = y_0, f(x_1) = y_1, f(x_2) = y_2, f’(x_1)=m $
P ( x ) = f ( x 0 ) + f [ x 0 , x 1 ] ( x − x 0 ) + f [ x 0 , x 1 , x 2 ] ( x − x 0 ) ( x − x 1 ) + A ( x − x 0 ) ( x − x 1 ) ( x − x 2 ) A = f ′ ( x 1 ) − f [ x 0 , x 1 ] − f [ x 0 , x 1 , x 2 ] ( x 1 − x 0 ) ( x 1 − x 0 ) ( x 1 − x 2 ) P(x) = f(x_0) + f[x_0,x_1](x-x_0) + f[x_0,x_1,x_2](x-x_0)(x-x_1) + A(x-x_0)(x-x_1)(x-x_2) \\ A = \frac{f'(x_1) - f[x_0,x_1] - f[x_0,x_1,x_2](x_1-x_0)}{(x_1-x_0)(x_1-x_2)} P(x)=f(x0)+f[x0,x1](xx0)+f[x0,x1,x2](xx0)(xx1)+A(xx0)(xx1)(xx2)A=(x1x0)(x1x2)f(x1)f[x0,x1]f[x0,x1,x2](x1x0)
其中A的取值可以用 P ′ ( x 1 ) = f ′ ( x 1 ) P'(x_1) = f'(x_1) P(x1)=f(x1)求得。类似拉格朗日方法,设 R = k ( x ) w ( x ) , ϕ ( x ) = f − P − R R=k(x)w(x),\phi(x)=f-P-R R=k(x)w(x),ϕ(x)=fPR,套罗尔定理,求出 K K K套回 R R R,以下给出误差形式
R ( x ) = 1 4 ! f ( 4 ) ( η ) ( x − x 0 ) ( x − x 1 ) 2 ( x − x 2 ) R(x) = \frac{1}{4!}f^{(4)}(\eta)(x-x_0)(x-x_1)^2(x-x_2) R(x)=4!1f(4)(η)(xx0)(xx1)2(xx2)

第二种(两点三次): f ( x 0 ) = y 0 , f ( x 1 ) = y 1 , f ′ ( x 0 ) = m 0 , f ′ ( x 1 ) = m 1 f(x_0) = y_0, f(x_1) = y_1, f'(x_0) = m_0, f'(x_1)=m_1 f(x0)=y0,f(x1)=y1,f(x0)=m0,f(x1)=m1

给出假设
H ( x ) = α 0 ( x ) y 0 + α 1 ( x ) y 1 + β 0 ( x ) m 0 + β 1 ( x ) m 1 α i ( x j ) = { 1 , i = j 0 , i ≠ j ,   α i ′ ( x j ) = 0 β i ( x j ) = 0 ,   β i ′ ( x j ) = { 1 , i = j 0 , i ≠ j H(x) = \alpha_0(x) y_0 + \alpha_1(x) y_1 + \beta_0(x) m_0 + \beta_1(x) m_1 \\ \alpha_i(x_j) = \begin{cases} 1, i=j \\ 0,i\neq j\end{cases}, \space \alpha_i'(x_j) = 0 \\ \beta_i(x_j) = 0 , \space \beta_i'(x_j) = \begin{cases} 1, i=j \\ 0,i\neq j\end{cases} \\ H(x)=α0(x)y0+α1(x)y1+β0(x)m0+β1(x)m1αi(xj)={1,i=j0,i=j, αi(xj)=0βi(xj)=0, βi(xj)={1,i=j0,i=j
经过一通推导,得公式
在这里插入图片描述

误差同拉格朗日有
R 3 ( x ) = 1 4 ! f ( 4 ) ( η ) ( x − x 0 ) 2 ( x − x 1 ) 2 R_3(x) = \frac{1}{4!}f^{(4)}(\eta)(x-x_0)^2(x-x_1)^2 R3(x)=4!1f(4)(η)(xx0)2(xx1)2

分段插值

分段线性
P h ( x ) = x − x k + 1 x k − x k + 1 y k + x − x k x k + 1 − x k y k + 1 R ( x ) ≤ ∣ M 8 h 2 ∣ l i m h → 0 P h ( x ) = f ( x ) P_h(x) = \frac{x-x_{k+1}}{x_k-x_{k+1}} y_k + \frac{x-x_{k}}{x_{k+1}-x_{k}} y_{k+1} \\ R(x) \leq |\frac{M}{8}h^2| \\ lim_{h\rightarrow 0} P_h(x) = f(x) Ph(x)=xkxk+1xxk+1yk+xk+1xkxxkyk+1R(x)8Mh2limh0Ph(x)=f(x)
分段埃尔米特(两点三次埃尔米特公式)
R ( x ) ≤ M 384 h 4 R(x) \leq \frac{M}{384}h^4 R(x)384Mh4
三次样条:

条件 (4n-2)、 边界条件 (2)
S i ( x i ) = y i ,   S i ( x i + 1 ) = y i + 1 ,   S i ′ ( x i ) = S i + 1 ′ ( x ) ,   S i ′ ′ ( x i ) = S i + 1 ′ ′ ( x ) S 0 ′ ( a ) = S n − 1 ′ ( b ) = 0 S_i(x_i) = y_i,\space S_{i}(x_{i+1})=y_{i+1},\space S_i'(x_i)=S_{i+1}'(x),\space S_i''(x_i)=S_{i+1}''(x) \\ S_0'(a) = S_{n-1}'(b) = 0 Si(xi)=yi, Si(xi+1)=yi+1, Si(xi)=Si+1(x), Si(xi)=Si+1(x)S0(a)=Sn1(b)=0
公式 (其中 m j = S ′ ( x j ) m_j=S'(x_j) mj=S(xj)是未知量,需要靠二阶导相等规则来求取)
S ( x ) = ∑ j = 0 n α j y j + β j m j S(x) = \sum_{j=0}^n \alpha_j y_j + \beta_j m_j S(x)=j=0nαjyj+βjmj

误差
R ( x ) ≤ ∣ 5 M 384 h 4 ∣ R(x) \leq |\frac{5M}{384}h^4| R(x)3845Mh4

逼近

范数

无穷范数 : ∣ f ( x ) − P ( x ) ∣ ∞ = m a x a ≤ x ≤ b ∣ f ( x ) − P ( x ) ∣ |f(x)-P(x)|_\infty = max_{a\leq x\leq b} |f(x)-P(x)| f(x)P(x)=maxaxbf(x)P(x)

二范数 : ∣ f ( x ) − P ( x ) ∣ 2 = ∫ a b ( f ( x ) − P ( x ) ) 2 |f(x) - P(x)|_2 = \sqrt{\int_a^b(f(x)-P(x))^2} f(x)P(x)2=ab(f(x)P(x))2

定理

维尔斯特拉

f ( x ) ∈ C [ a , b ] , ∀ ϵ > 0 , ∃ P n ( x ) f(x) \in C[a,b], \forall\epsilon>0, \exist P_n(x) f(x)C[a,b],ϵ>0,Pn(x) 使得 ∣ f ( x ) − P ( x ) ∣ < ϵ |f(x)-P(x)|<\epsilon f(x)P(x)<ϵ在区间上一致成立 ( ϵ \epsilon ϵ越小、 n n n越大)

最佳一致逼近

∀ f ( x ) ∈ C [ a , b ] , \forall f(x)\in C[a,b], f(x)C[a,b], 存在唯一最佳一致逼近多项式 P ∗ ( x ) ,   s . t   Δ ( f , P ∗ ) = min ⁡ P max ⁡ x ∣ f ( x ) − P ( x ) ∣ P^*(x),\space s.t\space\Delta(f,P^*) = \min_P\max_x |f(x) - P(x)| P(x), s.t Δ(f,P)=minPmaxxf(x)P(x)

P n ∗ ( x ) P^*_n(x) Pn(x) f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)C[a,b]的最佳一致逼近多项式 ⇒ \Rightarrow P n ∗ ( x ) P^*_n(x) Pn(x) f ( x ) f(x) f(x)的插值多项式

切比雪夫

P n ∗ ( x ) P_n^*(x) Pn(x) f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)C[a,b]的最佳一致逼近多项式 ⇔ \Leftrightarrow P n ∗ ( x ) P_n^*(x) Pn(x) f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]中至少有 n + 2 n+2 n+2个正负偏差点

最佳一致逼近求解

例题: f ( x ) = ∣ x ∣ , x ∈ [ − 1 , 2 ] f(x) = |x|, x\in[-1,2] f(x)=x,x[1,2], 求最佳一致逼近多项式 P ( x ) = a x + b P(x) = ax+ b P(x)=ax+b,

  1. [ P ( x 1 ) − f ( x 1 ) ] ′ = 0 [P(x_1)-f(x_1)]'=0 [P(x1)f(x1)]=0求得 x 1 x_1 x1、根据边界条件求得 x 0 , x 2 x_0, x_2 x0,x2

  2. { f ( x 0 ) − P ( x 0 ) = f ( x 2 ) − P ( x 2 ) f ( x 0 ) − P ( x 0 ) = − [ f ( x 1 ) − P ( x 1 ) ] \begin{cases} f(x_0)-P(x_0) = f(x_2)-P(x_2) \\ f(x_0)-P(x_0) = -[f(x_1) - P(x_1)] \end{cases} {f(x0)P(x0)=f(x2)P(x2)f(x0)P(x0)=[f(x1)P(x1)],求得 a 0 , a 1 . . . a_0, a_1... a0,a1...

李米兹迭代逼近: (最佳一致逼近计算量大,求取近似最佳逼近)

  1. P ( x ) = a 0 + a 1 x + a 2 x 2 . . . P(x) = a_0 + a_1 x + a_2 x^2... P(x)=a0+a1x+a2x2...,随机初始化 x 0 , . . . , x n + 1 x_0, ..., x_{n+1} x0,...,xn+1
  2. 根据 Δ x k = − Δ x k + 1 \Delta_{x_k} = -\Delta_{x_{k+1}} Δxk=Δxk+1 算出 a 0 , . . a n a_0,..a_n a0,..an
  3. 根据边界条件以及$[P(x_1)-f(x_1)]’=0 $ 求出 x 1 , x 2 . . . x_1, x_2... x1,x2...
  4. 迭代到收敛
切比雪夫多项式

定义: T n ( x ) = cos ⁡ ( n ⋅ arccos ⁡ ( x ) ) , x ∈ [ − 1 , 1 ] T_n(x) = \cos(n\cdot \arccos(x)), x\in[-1,1] Tn(x)=cos(narccos(x)),x[1,1]
T 0 ( x ) = 1 T 1 ( x ) = x T 2 ( x ) = 2 x 2 − 1 T 3 ( x ) = 4 x 3 − 3 x T 4 ( x ) = 8 x 4 − 8 x 2 + 1 T 5 ( x ) = 16 x 5 − 20 x 3 + 5 x T_0(x) = 1 \\ T_1(x) = x \\ T_2(x) = 2x^2 - 1 \\ T_3(x) = 4x^3 - 3x \\ T_4(x) = 8x^4 - 8x^2 + 1 \\ T_5(x) = 16x^5 - 20x^3 + 5x \\ T0(x)=1T1(x)=xT2(x)=2x21T3(x)=4x33xT4(x)=8x48x2+1T5(x)=16x520x3+5x
性质 :

  1. T n + 1 ( x ) = 2 x T n ( x ) − T n − 1 ( x ) T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x) Tn+1(x)=2xTn(x)Tn1(x)
  2. T n ( x ) T_n(x) Tn(x)首相为 2 n − 1 2^{n-1} 2n1 n n n为奇数时为奇函数、 n n n为偶数时为偶函数
  3. ∣ T n ( x ) ∣ ≤ 1 |T_n(x)|\leq 1 Tn(x)1,在 x k = cos ⁡ ( k π n ) x_k = \cos(\frac{k\pi}{n}) xk=cos(nkπ)处轮流取 ± 1 \pm 1 ±1
  4. T n ( x ) T_n(x) Tn(x) [ − 1 , 1 ] [-1,1] [1,1]上有 n n n个零点, n + 1 n+1 n+1个偏差点
  5. T n ( x ) T_n(x) Tn(x) [ − 1 , 1 ] [-1,1] [1,1]上带权 1 1 − x 2 \frac{1}{\sqrt{1-x^2}} 1x2 1正交
  6. 函数正交: f , g f,g f,g [ a , b ] [a,b] [a,b]区间上带权 w w w正交 ⇒ \Rightarrow $\int f(x)\cdot g(x)\cdot w(x) dx = 0 $

例题 :

f n ( x ) − P n − 1 ( x ) = k T n ( x ) f_n(x) - P_{n-1}(x) = kT_n(x) fn(x)Pn1(x)=kTn(x) f f f P P P 高一阶、可以列出 n + 1 n+1 n+1个方程,求解 k , a 0 , . . . , a n − 1 k,a_0,...,a_{n-1} k,a0,...,an1

最小零偏差 w n ( x ) = 1 2 n − 1 T ( x ) w_n(x)= \frac{1}{2^{n-1}}T(x) wn(x)=2n11T(x)与零偏差最小且 Δ ( w n , 0 ) = 1 2 n − 1 \Delta(w_n, 0) = \frac{1}{2^{n-1}} Δ(wn,0)=2n11

拉格朗日插值: 取插值节点 x = cos ⁡ ( ( 2 k + 1 ) π 2 n ) x = \cos(\frac{(2k+1)\pi}{2n}) x=cos(2n(2k+1)π)
R ( x ) ≤ ∣ M n ! m a x x w n ( x ) ∣ = ∣ M n ! 1 2 n − 1 ∣ R(x) \leq |\frac{M}{n!}max_xw_n(x)| = |\frac{M}{n!}\frac{1}{2^{n-1}}| R(x)n!Mmaxxwn(x)=n!M2n11
区间变换:
t = cos ⁡ ( ( 2 k + 1 ) π 2 n ) , t ∈ [ − 1 , 1 ] x = a + b 2 + a − b 2 t , x ∈ [ a , b ] R ( x ) ≤ ∣ M n ! 1 2 n − 1 ( b − a 2 ) n ∣ = ∣ M n ! ( b − a ) n 2 2 n − 1 ∣ t = \cos(\frac{(2k+1)\pi}{2n}), t\in[-1,1] \\ x = \frac{a+b}{2} + \frac{a-b}{2}t, x\in[a,b] \\ R(x) \leq |\frac{M}{n!}\frac{1}{2^{n-1}}(\frac{b-a}{2})^n| = |\frac{M}{n!}\frac{(b-a)^n}{2^{2n-1}}| t=cos(2n(2k+1)π),t[1,1]x=2a+b+2abt,x[a,b]R(x)n!M2n11(2ba)n=n!M22n1(ba)n

勒让德多项式

定义: P n ( x ) = n ! ( 2 n ) ! d n d x n ( x 2 − 1 ) n P_n(x) = \frac{n!}{(2n)!}\frac{d^n}{dx^n}(x^2-1)^n Pn(x)=(2n)!n!dxndn(x21)n
P 0 ( x ) = 1 ,   P 1 ( x ) = x P 2 ( x ) = ( 3 x 2 − 1 ) / 2 P 3 ( x ) = ( 5 x 3 − 3 x ) / 2 P 4 ( x ) = ( 35 x 4 − 30 x 2 + 3 ) / 8 P 5 ( x ) = ( 63 x 5 − 70 x 3 + 15 x ) / 8 P_0(x) = 1,\space P_1(x) = x \\ P_2(x) = (3x^2-1)/2 \\ P_3(x) = (5x^3-3x)/2 \\ P_4(x) = (35x^4-30x^2+3)/8 \\ P_5(x) = (63x^5-70x^3+15x)/8 \\ P0(x)=1, P1(x)=xP2(x)=(3x21)/2P3(x)=(5x33x)/2P4(x)=(35x430x2+3)/8P5(x)=(63x570x3+15x)/8
性质

  1. 正交性: ∫ − 1 1 1 ⋅ P i ( x ) ⋅ P j ( x ) d x = 0 , i ≠ j \int_{-1}^1 1\cdot P_i(x)\cdot P_j(x) dx = 0, i\neq j 111Pi(x)Pj(x)dx=0,i=j
  2. 迭代: ( n + 1 ) P n + 1 = ( 2 n + 1 ) x P n ( x ) − n P n − 1 ( x ) (n+1)P_{n+1} = (2n+1)xP_n(x) - nP_{n-1}(x) (n+1)Pn+1=(2n+1)xPn(x)nPn1(x)
  3. 奇偶性: 当n是奇数 P n ( x ) P_n(x) Pn(x)是奇函数,当n是偶数 P n ( x ) P_n(x) Pn(x)是偶函数
  4. n个零点
  5. 在所有首次项为1的多项式中, P n ( x ) P_n(x) Pn(x)与零的平方误差最小
最佳平方逼近

内积
( f , g ) = ∫ a b ρ ( x ) f ( x ) g ( x ) ( f , g ) = ( g , f ) c ( f , g ) = ( c f , g ) ( f 1 + f 2 , g ) = ( f 1 , g ) + ( f 2 , g ) ( f , f ) ≥ 0 ( f , f ) = 0 ⇔ f = 0 (f,g) = \int_a^b\rho(x)f(x)g(x) \\ (f,g) = (g,f) \\ c(f,g) = (cf, g) \\ (f_1+f_2,g) = (f_1,g) + (f_2, g) \\ (f,f) \geq 0 \\ (f,f) = 0 \Leftrightarrow f = 0 (f,g)=abρ(x)f(x)g(x)(f,g)=(g,f)c(f,g)=(cf,g)(f1+f2,g)=(f1,g)+(f2,g)(f,f)0(f,f)=0f=0
求解
f ( x ) ∈ [ a , b ] , P ( x ) = a 1 x + a 0 , ρ ( x ) = 1 { ( ϕ 0 , ϕ 0 ) a 0 + ( ϕ 0 , ϕ 1 ) a 1 = ( ϕ 0 , f ) ( ϕ 1 , ϕ 0 ) a 0 + ( ϕ 1 , ϕ 1 ) a 1 = ( ϕ 1 , f ) ( ϕ 0 , ϕ 1 ) = ∫ a b x d x ( ϕ 1 , f ) = ∫ a b x f ( x ) d x R ( x ) = ( f , f ) − ∑ j a j ( ϕ j , f ) f(x)\in[a,b], P(x) = a_1x+a_0, \rho(x)=1 \\ \begin{cases} (\phi_0,\phi_0)a_0 + (\phi_0,\phi_1)a_1 = (\phi_0, f) \\ (\phi_1,\phi_0)a_0 + (\phi_1,\phi_1)a_1 = (\phi_1, f) \\ \end{cases} \\ (\phi_0,\phi_1) = \int_a^b xdx \\ (\phi_1,f) = \int_a^b xf(x)dx \\ R(x) = (f,f) - \sum_j a_j(\phi_j, f) f(x)[a,b],P(x)=a1x+a0,ρ(x)=1{(ϕ0,ϕ0)a0+(ϕ0,ϕ1)a1=(ϕ0,f)(ϕ1,ϕ0)a0+(ϕ1,ϕ1)a1=(ϕ1,f)(ϕ0,ϕ1)=abxdx(ϕ1,f)=abxf(x)dxR(x)=(f,f)jaj(ϕj,f)
正交多项式: ϕ \phi ϕ选择正交多项式
( ϕ i , ϕ j ) = 0 , i ≠ j a i = ( f , ϕ i ) ( ϕ i , ϕ i ) R ( x ) = ( f , f ) − ∑ j ( f , ϕ j ) 2 ( ϕ j , ϕ j ) (\phi_i, \phi_j) = 0, i\neq j \\ a_i = \frac{(f,\phi_i)}{(\phi_i, \phi_i)} \\ R(x) = (f,f) - \sum_j \frac{(f,\phi_j)^2}{(\phi_j,\phi_j)} (ϕi,ϕj)=0,i=jai=(ϕi,ϕi)(f,ϕi)R(x)=(f,f)j(ϕj,ϕj)(f,ϕj)2
切比雪夫
f ( x ) ∈ [ − 1 , 1 ] , ϕ = s p a n { T 0 , T 1 , . . . , T n } ρ ( x ) = 1 1 − x 2 S ∗ ( x ) = ∑ j a j T j = 1 π ( f , T 0 ) + ∑ j = 1 n 2 π ( f , T j ) a 0 = 1 π ( f , T 0 ) ,   a k = 2 π ( f , T k ) R ( x ) = f − S ∗ = 2 π ( f , T n + 1 ) T n + 1 f(x)\in[-1, 1], \phi=span\{T_0,T_1,...,T_n\} \rho(x) = \frac{1}{\sqrt{1-x^2}} \\ S^*(x)=\sum_j a_jT_j = \frac{1}{\pi}(f,T_0) + \sum_{j=1}^n \frac{2}{\pi}(f,T_j) \\ a_0 = \frac{1}{\pi}(f,T_0),\space a_k = \frac{2}{\pi}(f,T_k) \\ R(x) = f -S^* = \frac{2}{\pi}(f,T_{n+1})T_{n+1} \\ f(x)[1,1],ϕ=span{T0,T1,...,Tn}ρ(x)=1x2 1S(x)=jajTj=π1(f,T0)+j=1nπ2(f,Tj)a0=π1(f,T0), ak=π2(f,Tk)R(x)=fS=π2(f,Tn+1)Tn+1
勒让德
f ( x ) ∈ [ − 1 , 1 ] , ϕ = s p a n { P 0 , P 1 , . . . , P n } , ρ ( x ) = 1 S ∗ ( x ) = ∑ j a j P j = ∑ j = 0 n 2 k + 1 2 ( f , P j ) R ( x ) = ( f , f ) − ∑ j 2 j + 1 2 ( f , P j ) 2 f(x)\in[-1, 1], \phi=span\{P_0,P_1,...,P_n\}, \rho(x) = 1 \\ S^*(x)=\sum_j a_jP_j = \sum_{j=0}^n \frac{2k+1}{2}(f,P_j) \\ R(x) = (f,f) - \sum_j \frac{2j+1}{2}(f,P_j)^2 \\ f(x)[1,1],ϕ=span{P0,P1,...,Pn},ρ(x)=1S(x)=jajPj=j=0n22k+1(f,Pj)R(x)=(f,f)j22j+1(f,Pj)2

数值积分

基本概念
  • 近似方法
    ∫ a b f ( x ) d x = ∫ a b L n ( x ) d x = ∫ a b ∑ k l k ( x ) f ( x k ) d x = ∑ k A k f ( x k ) A k = ∫ a b l k ( x ) d x R ( x ) = ∫ a b f ( n ) ( η ) n ! w ( x ) \int_a^b f(x)dx = \int_a^b L_n(x)dx = \int_a^b \sum_k l_k(x)f(x_k)dx = \sum_k A_kf(x_k) \\ A_k = \int_a^b l_k(x) dx \\ R(x) = \int_a^b \frac{f^{(n)}(\eta)}{n!}w(x) abf(x)dx=abLn(x)dx=abklk(x)f(xk)dx=kAkf(xk)Ak=ablk(x)dxR(x)=abn!f(n)(η)w(x)

  • 代数精度

    ∫ a b f ( x ) d x = ∑ k n A k f ( x k ) \int_a^b f(x)dx = \sum_k^n A_kf(x_k) abf(x)dx=knAkf(xk)对所有 ≤ n \leq n n次多项式都成立 ⇒ \Rightarrow 公式具有n次代数精度

    公式具有n次代数精度 ⇒ \Rightarrow A k = ∫ a b l k ( x ) d x A_k = \int_a^b l_k(x) dx Ak=ablk(x)dx

  • 稳定性

    当f存在误差时,近似积分得到的值误差足够小

牛顿-科特斯

公式 (其中n+1是插值节点个数、k是idx)
I n = ( b − a ) ∑ k = 0 n C k ( n ) f ( x k ) C k ( n ) = ( − 1 ) n − k n k ! ( n − k ) ! ∫ 0 n Π j ≠ k ( t − j ) d t C 0 ( 1 ) = C 1 ( 1 ) = 1 2 C 0 ( 2 ) = 1 6 , C 1 ( 2 ) = 2 3 , C 2 ( 2 ) = 1 6 C 0 ( 3 ) = 1 8 , C 1 ( 3 ) = 3 8 , C 2 ( 3 ) = 3 8 , C 2 ( 3 ) = 1 8 I_n = (b-a)\sum_{k=0}^n C_k^{(n)}f(x_k) \\ C_k^{(n)} = \frac{(-1)^{n-k}}{nk!(n-k)!}\int_0^n\Pi_{j\neq k}(t-j)dt \\ C_0^{(1)} = C_1^{(1)} = \frac{1}{2} \\ C_0^{(2)} = \frac{1}{6}, C_1^{(2)} = \frac{2}{3}, C_2^{(2)} = \frac{1}{6} \\ C_0^{(3)} = \frac{1}{8}, C_1^{(3)} = \frac{3}{8}, C_2^{(3)} = \frac{3}{8}, C_2^{(3)} = \frac{1}{8} \\ In=(ba)k=0nCk(n)f(xk)Ck(n)=nk!(nk)!(1)nk0nΠj=k(tj)dtC0(1)=C1(1)=21C0(2)=61,C1(2)=32,C2(2)=61C0(3)=81,C1(3)=83,C2(3)=83,C2(3)=81
代数精度: 当 I n I_n In为偶阶函数时, I n I_n In n + 1 n+1 n+1次代数精度

方法误差:

矩形: ( b − a ) 3 24 f ′ ′ ( η ) \frac{(b-a)^3}{24}f''(\eta) 24(ba)3f(η)

梯形: − ( b − a ) 3 12 f ′ ′ ( η ) -\frac{(b-a)^3}{12}f''(\eta) 12(ba)3f(η)

辛普森: − ( b − a ) 5 2880 f ( 4 ) ( η ) -\frac{(b-a)^5}{2880}f^{(4)}(\eta) 2880(ba)5f(4)(η)

复化积分

复化梯形公式( n + 1 n+1 n+1个点): I = h 2 [ f ( a ) + 2 ∑ k = 1 n − 1 f ( x k ) + f ( b ) ] I = \frac{h}{2}[f(a) + 2\sum_{k=1}^{n-1} f(x_k) + f(b)] I=2h[f(a)+2k=1n1f(xk)+f(b)]

复化梯形误差: R ( f ) = − n h 3 12 f ′ ′ ( η ) = − ( b − a ) h 2 12 f ′ ′ ( η ) R(f) = \frac{-nh^3}{12}f''(\eta) = \frac{-(b-a)h^2}{12}f''(\eta) R(f)=12nh3f(η)=12(ba)h2f(η)

复化辛普森公式( 2 n + 1 2n+1 2n+1个点): I = h 6 [ f ( a ) + 2 ∑ k = 1 n − 1 f ( x k ) + 4 ∑ k = 0 n − 1 f ( x k + h 2 ) + f ( b ) ] I = \frac{h}{6}[f(a) + 2\sum_{k=1}^{n-1} f(x_k) + 4\sum_{k=0}^{n-1}f(x_k+\frac{h}{2}) + f(b)] I=6h[f(a)+2k=1n1f(xk)+4k=0n1f(xk+2h)+f(b)]

复化辛普森误差: R ( f ) = − n h 5 2880 f ′ ′ ( η ) = − ( b − a ) h 4 2880 f ′ ′ ( η ) R(f) = \frac{-nh^5}{2880}f''(\eta) = \frac{-(b-a)h^4}{2880}f''(\eta) R(f)=2880nh5f(η)=2880(ba)h4f(η)

龙贝格&外推加速

递推梯形公式

$T_{2n} = \frac{1}{2} T_n + \frac{h}{2}\sum_{k=0}^{n-1}f(x_{k+\frac{h}{2}}) $

龙贝格 (从梯形公式 T T T到辛普森公式 I I I)
I − T 2 n I − T n = − ( b − a ) 12 ( h 2 ) 2 f ′ ′ ( η ) − ( b − a ) 12 h 2 f ′ ′ ( η ) = 1 4 I = 1 3 ( 4 T 2 n − T n ) \frac{I-T_{2n}}{I-T_n} = \frac{-\frac{(b-a)}{12}(\frac{h}{2})^2f''(\eta)}{-\frac{(b-a)}{12}h^2f''(\eta)} = \frac{1}{4} \\ I = \frac{1}{3}(4T_{2n}-T_n) \\ ITnIT2n=12(ba)h2f(η)12(ba)(2h)2f(η)=41I=31(4T2nTn)

**理查孙外推 **(每加速一次收敛速度提高两阶)

在这里插入图片描述

T m ( k ) = 4 m 4 m − 1 T m − 1 ( k + 1 ) + 1 4 m − 1 T m − 1 ( k ) T_m^{(k)} = \frac{4^m}{4^m-1} T_{m-1}^{(k+1)} + \frac{1}{4^m-1} T_{m-1}^{(k)} Tm(k)=4m14mTm1(k+1)+4m11Tm1(k)

高斯求积
  • 理论

高斯求积:

性质: 公式 ∫ a b f ( x ) d x = ∑ k = 0 n A k f ( x k ) \int_a^b f(x)dx = \sum_{k=0}^nA_k f(x_k) abf(x)dx=k=0nAkf(xk) A k , x k A_k,x_k Ak,xk 2 n + 2 2n+2 2n+2个未知数,可以达到 2 n + 1 2n+1 2n+1阶精度

方法: 分别令 f ( x ) = 1 , x , . . . , x 2 n + 1 f(x)=1,x,...,x^{2n+1} f(x)=1,x,...,x2n+1,可得 2 n + 1 2n+1 2n+1个方程,求解得到 A k , x k A_k,x_k Ak,xk取值

高斯点

定义: 能使公式具有 2 n + 1 2n+1 2n+1次精度的 x 0 , . . , x k x_0,..,x_k x0,..,xk

性质: w ( x ) = ( x − x 0 ) ⋅ ⋅ ⋅ ( x − x n ) w(x)=(x-x_0)\cdot\cdot\cdot(x-x_n) w(x)=(xx0)(xxn) p n ( x ) = 1 , x , . . . , x n p_n(x) = 1,x,...,x^n pn(x)=1,x,...,xn带权 ρ ( x ) \rho(x) ρ(x)正交 ⇒ \Rightarrow x 0 , . . , x n x_0,..,x_n x0,..,xn是高斯点

A k ( x ) ≥ 0 A_k(x) \geq 0 Ak(x)0

  • 高斯-勒让德:

方法: 用勒让德多项式的根作为 x 0 , . . . , x n x_0,...,x_n x0,...,xn

例题: ∫ − 1 1 f ( x ) d x \int_{-1}^1 f(x)dx 11f(x)dx的两点高斯-勒让德,由 P 2 ( x ) = 1 2 ( 3 x 2 − 1 ) P_2(x) = \frac{1}{2} (3x^2-1) P2(x)=21(3x21)可以得到$x_0=\sqrt{\frac{1}{3}}, x_1=-\sqrt{\frac{1}{3}} $

区间变换: ∫ a b f ( x ) d x \int_a^b f(x)dx abf(x)dx -> b − a 2 ∫ − 1 1 f ( b − a 2 t + b + a 2 ) d t \frac{b-a}{2}\int_{-1}^1 f(\frac{b-a}{2}t + \frac{b+a}{2}) dt 2ba11f(2bat+2b+a)dt

误差: R [ f ] = f ( 2 n + 2 ) ( η ) ( 2 n + 2 ) ! ∫ a b w 2 ( x ) d x = 2 2 n + 3 [ ( n + 1 ) ! ] 4 ( 2 n + 3 ) [ ( 2 n + 2 ) ! ] 3 f ( 2 n + 2 ) ( η ) R[f] = \frac{f^{(2n+2)}(\eta)}{(2n+2)!}\int_a^b w^2(x)dx = \frac{2^{2n+3}[(n+1)!]^4}{(2n+3)[(2n+2)!]^3}f^{(2n+2)}(\eta) R[f]=(2n+2)!f(2n+2)(η)abw2(x)dx=(2n+3)[(2n+2)!]322n+3[(n+1)!]4f(2n+2)(η)

  • 高斯-切比雪夫

方法: 用切比雪夫多项式的根作为 x 0 , . . . , x n x_0,...,x_n x0,...,xn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值