导数的四则运算法则
-
和的导数法则:
( f ( x ) + g ( x ) ) ′ = f ′ ( x ) + g ′ ( x ) (f(x) + g(x))' = f'(x) + g'(x) (f(x)+g(x))′=f′(x)+g′(x) -
差的导数法则:
( f ( x ) − g ( x ) ) ′ = f ′ ( x ) − g ′ ( x ) (f(x) - g(x))' = f'(x) - g'(x) (f(x)−g(x))′=f′(x)−g′(x) -
积的导数法则(莱布尼茨法则):
( f ( x ) ⋅ g ( x ) ) ′ = f ′ ( x ) ⋅ g ( x ) + f ( x ) ⋅ g ′ ( x ) (f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x) (f(x)⋅g(x))′=f′(x)⋅g(x)+f(x)⋅g′(x) -
商的导数法则:
( f ( x ) g ( x ) ) ′ = f ′ ( x ) ⋅ g ( x ) − f ( x ) ⋅ g ′ ( x ) [ g ( x ) ] 2 \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2} (g(x)f(x))′=[g(x)]2f′(x)⋅g(x)−f(x)⋅g′(x)
微分的四则运算法则
微分与导数的关系密切相关,微分可以通过导数来定义。若 ( y = f(x) ),那么其微分为:
d
y
=
f
′
(
x
)
⋅
d
x
dy = f'(x) \cdot dx
dy=f′(x)⋅dx
在此基础上,微分的四则运算法则如下:
-
和的微分:
d ( f ( x ) + g ( x ) ) = d f ( x ) + d g ( x ) d(f(x) + g(x)) = df(x) + dg(x) d(f(x)+g(x))=df(x)+dg(x) -
差的微分:
d ( f ( x ) − g ( x ) ) = d f ( x ) − d g ( x ) d(f(x) - g(x)) = df(x) - dg(x) d(f(x)−g(x))=df(x)−dg(x) -
积的微分:
d ( f ( x ) ⋅ g ( x ) ) = f ( x ) ⋅ d g ( x ) + g ( x ) ⋅ d f ( x ) d(f(x) \cdot g(x)) = f(x) \cdot dg(x) + g(x) \cdot df(x) d(f(x)⋅g(x))=f(x)⋅dg(x)+g(x)⋅df(x) -
商的微分:
d ( f ( x ) g ( x ) ) = g ( x ) ⋅ d f ( x ) − f ( x ) ⋅ d g ( x ) [ g ( x ) ] 2 d\left(\frac{f(x)}{g(x)}\right) = \frac{g(x) \cdot df(x) - f(x) \cdot dg(x)}{[g(x)]^2} d(g(x)f(x))=[g(x)]2g(x)⋅df(x)−f(x)⋅dg(x)
这些法则是微分和导数的基本运算规则,在求解极值、应用于物理问题等方面有着广泛的应用。理解这些法则对于进一步学习微积分和相关领域非常重要。