Human-object interaction prediction in videos through gaze following

Paper link
Code link

Abstract

The video-based HOI anticipation task in the third-person view is rarely researched. In this paper, a framework to detect current HOIs and anticipate future HOIs in videos is propose. Since people often fixate on an object before interacting with it, in this model gaze features together with the scene contexts and the visual appearances of human–object pairs are fused through a spatio-temporal transformer. Besides, a set of person-wise multi-label metrics are proposed to evaluate the model in the HOI anticipation task in a multi-person scenario.

Overview of the video-based HOI detection and anticipation framework.

三年级打开
The framework consists of three modules:

  • Object Module
    • The object module detects bounding boxes of humans { b t , i s } \{b^s_{t,i}\} { bt,is} and objects { b t , j } \{b_{t,j}\} { bt,j}, and recognizes object classes { c t , j } \{c_{t,j}\} { ct,j}. An object tracker obtains human and object trajectories ( { H i } \{\textbf{H}_i\} { Hi} and { O j } \{\textbf{O}_j\} { Oj}in the video. Then, the human visual features { v t , i s } \{v^s_{t,i}\} { vt,is}, object visual features { v t , j } \{v_{t,j}\} { vt,j}, visual relation features { v t , < i , j > } \{v_{t,<i,j>}\} { vt,<i,j>}, and spatial relation features { m t , < i , j > } \{m_{t,<i,j>}\} { m
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值