一、实验目的
对rgb和yuv分析三个通道的概率分布,并计算各自的熵。(编程实现)
二、注意事项
①两个文件的分辨率均为256*256,
②yuv为4:2:0采样空间
③存储格式为:rgb文件按每个像素BGR分量依次存放;YUV格式按照全部像素的Y数据块、U数据块和V数据块依次存放。
三、实现过程及结果
1、rgb图像分析
源程序:
#include<stdio.h>
#include<iostream>
#include<math.h>
using namespace std;
#define A 65536 //分辨率为256*256
int main()
{
//打开文件,创建输出文件
FILE* image, * red, * green, * blue;
fopen_s(&image, "C:\\Users\\LENOVO\\source\\repos\\sjyslab1\\down.rgb", "rb");
fopen_s(&red, "C:\\Users\\LENOVO\\source\\repos\\sjyslab1\\R.txt", "w");
fopen_s(&green, "C:\\Users\\LENOVO\\source\\repos\\sjyslab1\\G.txt", "w");
fopen_s(&blue, "C:\\Users\\LENOVO\\source\\repos\\sjyslab1\\B.txt", "w");
//定义R、G、B分量
unsigned char R[A] = { 0 }, G[A] = { 0 }, B[A] = { 0 };
//定义频率分量
double R_F[256] = { 0 }, G_F[256] = { 0 }, B_F[256] = { 0 };
//定义熵
double R_S = 0, G_S = 0, B_S = 0;
//读取R、G、B三个分量
unsigned char sum[256 * 256 * 3];
fread(sum, 1, 256 * 256 * 3, image);
for (int i = 0, j = 0; i < 256 * 256 * 3; i = i + 3, j++)
{
B[j] = *(sum + i);
G[j] = *(sum + i + 1);
R[j] = *(sum + i + 2);
}
//计数三通道各颜色值次数
for (int i = 0; i < 256; i++)
{
for (int j = 0; j < A; j++)
{
if (int(R[j] == i)) { R_F[i]++; }
if (int(G[j] == i)) { G_F[i]++; }
if (int(B[j] == i)) { B_F[i]++; }
}
}
//计算频率
for (int i = 0; i < 256; i++)
{
R_F[i] = R_F[i] / (256 * 256);
B_F[i] = B_F[i] / (256 * 256);
G_F[i] = G_F[i] / (256 * 256);
}
//将频率写入文件
fprintf(red, "值\t概率\n");
for (int i = 0; i < 256; i++)
{
fprintf(red, "%d\t%f\n", i, R_F[i]);
}
fprintf(green, "值\t概率\n");
for (int i = 0; i < 256; i++)
{
fprintf(green, "%d\t%f\n", i, G_F[i]);
}
fprintf(blue, "值\t概率\n");
for (int i = 0; i < 256; i++)
{
fprintf(blue, "%d\t%f\n", i, B_F[i]);
}
//计算并输出熵
for (int i = 0; i < 256; i++)
{
if (R_F[i] != 0) { R_S += -R_F[i] * log(R_F[i]) / log(2); }
if (G_F[i] != 0) { G_S += -G_F[i] * log(G_F[i]) / log(2); }
if (B_F[i] != 0) { B_S += -B_F[i] * log(B_F[i]) / log(2); }
}
cout << "R的熵为" << R_S << endl;
cout << "G的熵为" << G_S << endl;
cout << "B的熵为" << B_S << endl;
fclose(image);
fclose(red);
fclose(green);
fclose(blue);
return 0;
}
运行结果:
输出的概率分布txt文件导入Excel后并制作成折线图:
2、yuv图像分析
源程序:
#include<stdio.h>
#include<iostream>
#include<math.h>
using namespace std;
#define A 65536 //分辨率为256*256
int main()
{
//打开文件,创建输出文件
FILE* image, * fY, * fU, * fV;
fopen_s(&image, "C:\\Users\\LENOVO\\source\\repos\\sjyslab1\\down.yuv", "rb");
fopen_s(&fY, "C:\\Users\\LENOVO\\source\\repos\\sjyslab1\\Y.txt", "w");
fopen_s(&fU, "C:\\Users\\LENOVO\\source\\repos\\sjyslab1\\U.txt", "w");
fopen_s(&fV, "C:\\Users\\LENOVO\\source\\repos\\sjyslab1\\V.txt", "w");
unsigned char Y[A] = { 0 }, U[A / 4] = { 0 }, V[A / 4] = { 0 };
//定义yuv分量
double Y_F[256] = { 0 }, U_F[256] = { 0 }, V_F[256] = { 0 };
//定义频率分量
double Y_S = 0, U_S = 0, V_S = 0;
//定义熵
//分别读取YUV三个分量到数组中
unsigned char Array[98304];
fread(Array, 1, A * 1.5, image);
for (int i = 0; i < A; i++)
{
Y[i] = *(Array + i);
}
for (int i = A; i < A * 1.25; i++)
{
U[i - 65536] = *(Array + i);
}
for (int i = A * 1.25; i < A * 1.5; i++)
{
V[i - 81920] = *(Array + i);
}
//计数三通道各颜色值次数
for (int i = 0; i < A; i++)
{
Y_F[Y[i]]++;
}
for (int i = 0; i < (A / 4); i++)
{
U_F[U[i]]++;
}
for (int i = 0; i < (A / 4); i++)
{
V_F[V[i]]++;
}
//计算频率
for (int i = 0; i < 256; i++)
{
Y_F[i] = Y_F[i] / (A);
V_F[i] = V_F[i] / (A / 4);
U_F[i] = U_F[i] / (A / 4);
}
//将频率写入文件
fprintf(fY, "值\t概率\n");
for (int i = 0; i < 256; i++)
{
fprintf(fY, "%d\t%f\n", i, Y_F[i]);
}
fprintf(fU, "值\t概率\n");
for (int i = 0; i < 256; i++)
{
fprintf(fU, "%d\t%f\n", i, U_F[i]);
}
fprintf(fV, "值\t概率\n");
for (int i = 0; i < 256; i++)
{
fprintf(fV, "%d\t%f\n", i, V_F[i]);
}
//计算并输出熵
for (int i = 0; i < 256; i++)
{
if (Y_F[i] != 0) { Y_S += -Y_F[i] * log(Y_F[i]) / log(2); }
if (U_F[i] != 0) { U_S += -U_F[i] * log(U_F[i]) / log(2); }
if (V_F[i] != 0) { V_S += -V_F[i] * log(V_F[i]) / log(2); }
}
cout << "Y的熵为" << Y_S << endl;
cout << "U的熵为" << U_S << endl;
cout << "V的熵为" << V_S << endl;
fclose(image);
fclose(fY);
fclose(fU);
fclose(fV);
return 0;
}
运行结果:
输出的概率分布txt文件导入Excel后并制作成折线图: