数据压缩作业1:rgb和yuv分析三个通道的概率分布,并计算各自的熵
(1)实验目的
对down.rgb和down.yuv分析三个通道的概率分布,并计算各自的熵。(编程实现)两个文件的分辨率均为256*256,yuv为4:2:0采样空间,存储格式为:rgb文件按每个像素BGR分量依次存放;YUV格式按照全部像素的Y数据块、U数据块和V数据块依次存放。
(2)实验思路
1.读入一个RGB文件,创建3个空txt文件
2.开辟3个数组,将RGB数据从rgb文件中读出,并分别保存到3个数组中
3.计算各颜色通道数据概率分布,并写入txt文件
4.计算熵并输出
(3)实验过程
- RGB
代码
int main()
{
//打开,创建文件
FILE* image, * red, * green,*blue;
fopen_s(&image, "C:\\Users\\PC\\Desktop\\网课\\数据压缩\\作业1\\down.rgb", "rb");
fopen_s(&red, "C:\\Users\\PC\\Desktop\\网课\\数据压缩\\作业1\\Red.txt", "w");
fopen_s(&green, "C:\\Users\\PC\\Desktop\\网课\\数据压缩\\作业1\\Green.txt", "w");
fopen_s(&blue, "C:\\Users\\PC\\Desktop\\网课\\数据压缩\\作业1\\Blue.txt", "w");
//定义R、G、B分量
unsigned char R[A] = { 0 },G[A] = { 0 }, B[A] = { 0 };
//定义频率分量
double R_F[256] = { 0 },G_F[256] = { 0 },B_F[256] = { 0 };
//定义熵
double R_S = 0,G_S = 0, B_S = 0;
//分别读取R、G、B三个分量到数组中
unsigned char sum[256*256*3];
fread(sum, 1, 256*256*3, image);
for (int i = 0, j = 0; i < 256*256*3; i = i + 3, j++)
{
B[j] = *(sum + i);
G[j] = *(sum + i + 1);
R[j] = *(sum + i + 2);
}
//计数三通道各颜色值次数
for (int i = 0; i < 256; i++)
{
for (int j = 0; j < A; j++)
{
if (int(R[j] == i)) {R_F[i]++;}
if (int(G[j] == i)) {G_F[i]++;}
if (int(B[j] == i)) {B_F[i]++;}
}
}
//计算频率
for (int i = 0; i < 256; i++)
{
R_F[i] = R_F[i] / (256 * 256);
B_F[i] = B_F[i] / (256 * 256);
G_F[i] = G_F[i] / (256 * 256);
}
//将频率写入文件
fprintf(red, "值\t概率\n");
for (int i = 0; i < 256; i++)
{
fprintf(red, "%d\t%f\n", i, R_F[i]);
}
fprintf(green, "值\t概率\n");
for (int i = 0; i < 256; i++)
{
fprintf(green, "%d\t%f\n", i, G_F[i]);
}
fprintf(blue, "值\t概率\n");
for (int i = 0; i < 256; i++)
{
fprintf(blue, "%d\t%f\n", i, B_F[i]);
}
//计算并输出熵
for (int i = 0; i < 256; i++)
{
if (R_F[i] != 0) {R_S += -R_F[i] * log(R_F[i]) / log(double(2));}
if (G_F[i] != 0) {G_S += -G_F[i] * log(G_F[i]) / log(double(2));}
if (B_F[i] != 0) {B_S += -B_F[i] * log(B_F[i]) / log(double(2));}
}
cout << "R熵为" << R_S << endl;
cout << "G熵为" << G_S << endl;
cout << "B熵为" << B_S << endl;
fclose(image);
fclose(red);
fclose(green);
fclose(blue);
return 0;
}
结果:
- YUV
- 代码的计算部分与RGB很相似,与rgb文件的不同就是文件的读取
- 由图像分辨率为256*256,和色度取样格式为4:2:0可知:Y所占字节数为65536,可算出U偏移量为65536。U、V各是Y数量的1/4,即各16384个,V偏移量为81920。图像所占总字节数为98304
代码
下面展示一些内联代码片
。
//
int main()
{
//定义Y、U、V分量
unsigned char Y[A] = { 0 }, U[A/4] = { 0 }, V[A/4] = { 0 };
//定义Y、U、V概率
double Y1[256] = { 0 }, U1[256] = { 0 }, V1[256] = { 0 };
//定义Y、U、V的熵
double Y2 = 0, U2 = 0, V2 = 0;
FILE* Picture, * PartY, * PartU, * PartV;
fopen_s(&Picture, "C:\\Users\\PC\\Desktop\\网课\\数据压缩\\作业1\\down.yuv", "rb");
fopen_s(&PartY, "C:\\Users\\PC\\Desktop\\网课\\数据压缩\\作业1\\Y.txt", "w");
fopen_s(&PartU, "C:\\Users\\PC\\Desktop\\网课\\数据压缩\\作业1\\U.txt", "w");
fopen_s(&PartV, "C:\\Users\\PC\\Desktop\\网课\\数据压缩\\作业1\\V.txt", "w");
//分别读取Y、U、V到数组中
unsigned char Array[98304];
fread(Array, 1, A * 1.5, Picture);
for (int i = 0; i < A ; i++)
{
Y[i] = *(Array + i);
}
for (int i = A; i < A * 1.25; i++)
{
U[i-65536] = *(Array + i);
}
for (int i = A * 1.25; i < A * 1.5; i++)
{
V[i - 81920] = *(Array + i);
}
//计算三通道的颜色强度级的频数
for (int i = 0; i < A; i++)
{
Y1[Y[i]]++;
}
for (int i = 0; i < (A/4); i++)
{
U1[U[i]]++;
V1[V[i]]++;
}
//分别计算Y、U、V三通道的概率
for (int i = 0; i < 256; i++)
{
Y1[i] = Y1[i] / (A);
U1[i] = U1[i] / (A/4);
V1[i] = V1[i] / (A/4);
}
//将概率写入文件
for (int i = 0; i < 256; i++)
{
fprintf(PartY, "%d\t%f\n", i, Y1[i]);
fprintf(PartU, "%d\t%f\n", i, U1[i]);
fprintf(PartV, "%d\t%f\n", i, V1[i]);
}
//计算熵
for (int i = 0; i < 256; i++)
{
if (Y1[i] != 0) { Y2 += -Y1[i] * log(Y1[i]) / log(double(2)); }
if (U1[i] != 0) { U2 += -U1[i] * log(U1[i]) / log(double(2)); }
if (V1[i] != 0) { V2 += -V1[i] * log(V1[i]) / log(double(2)); }
}
printf("Y熵为%f\n", Y2);
printf("U熵为%f\n", U2);
printf("V熵为%f\n", V2);
return 0;
}
结果:
(4)实验结果
将得到的TXT文件导入matlab,plot画图
RGB:
YUV:
(5)分析
- RGB的三个分量的熵大于YUV的三个分量,RGB的去相关性比YUV好。
- 图像分辨率为256*256,和色度取样格式为4:2:0可知,Y所占字节数为65536,可算出U至数据起点的偏移量为65536。U、V各是Y数量的1/4,即各16384个,可算出V至数据起点的偏移量为81920。