Windows11下Docker使用记录(五)


Docker容器可以从底层虚拟化,使我们能够在 不降级 CUDA驱动程序的情况下使用 任何版本的CUDA Toolkit,非常方便。
当然,Docker容器并不会提供真正的硬件虚拟化,而是通过隔离喝共享宿主机的操作系统内核来实现虚拟化。

准备

名称版本
win11
wsl2Ubuntu-22.04(以下简称WSL)
(Host) Driver Version537.58(不建议更高版本)

1. WSL安装cuda container toolkit

需要docker深度学习的这个必装,因为我们后续是从wsl中创建docker container。
安装说明链接:https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
我是按以下安装的:

curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
  && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
    sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
    sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sed -i -e '/experimental/ s/^#//g' /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit
sudo nvidia-ctk runtime configure --runtime=docker
systemctl --user restart docker #或sudo systemctl restart docker

2. win11 Docker Desktop 设置

Docker Desktop setting里设置如下,这样wsl中的docker image 和 container 也都可以在Docker Desktop这里看到。
在这里插入图片描述

3. WSL创建docker container并连接cuda

在docker中使用nvidia gpu需要使用nvidia/cuda发布的images,看tag可以选cuda-toolkit版本。我选的是11.6的,这里需要注意的是runtime版本虽然小,但是cuda-toolkit不完整,所以最后我选的是11.6.1-cudnn8-devel-ubuntu20.04在这里插入图片描述
在wsl里运行:

docker pull nvidia/cuda:11.6.1-cudnn8-devel-ubuntu20.04
# 为了保证可视化 run image 时加以下参数
docker run -it --gpus all  -e NVIDIA_DRIVER_CAPABILITIES=compute,utility -e NVIDIA_VISIBLE_DEVICES=all --name 自定义 --env="DISPLAY" --env="QT_X11_NO_MITSHM=1" --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" --device=/dev/dri:/dev/dri -p 自定义:自定义 nvidia/cuda:11.6.1-cudnn8-devel-ubuntu20.04 bash

安装VcXsrv可以可视化,可视化的部分请看这篇
这时候已经有/cuda了。

(robodiff) root@108c7c90b1f5:/usr/local# ls
bin  cuda  cuda-11  cuda-11.6  etc  games  include  lib  man  sbin  share  src

但这时候 nvcc -V应该是不可以的,需要先给/cuda/cuda-11.6建立链接,然后在~/.bashrc里添加以下,记得source ~/.bashrc

# 给`/cuda`和`/cuda-11.6`建立链接
ln -sf /usr/local/cuda-11.6 /usr/local/cuda
export CUDA_HOME=/usr/local/cuda
export PATH=${PATH}:${CUDA_HOME}/bin
export LD_LIBRARY_PATH=${CUDA_HOME}/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

这时候nvcc -V可以,是我想要的v11.6如下图。
在这里插入图片描述

我们也可以用cuda-samples进一步验证。(此步可略)

cd /usr/local/cuda/
git clone https://github.com/NVIDIA/cuda-samples.git
cd cuda-samples
git checkout tags/v11.6 #选择指定tag的版本
cd Samples/1_Utilities/deviceQuery
make #这时候会生成名为 deviceQuery 的可执行文件
./deviceQuery #运行它会显示cuda相关的所有信息

最后一行显示了 Result = PASS 就说明我们cuda安装成功并且可以运行了。
此时,装的pytorch就可以使用GPU了。
在这里插入图片描述

4. container安装miniconda(可选)

container中可以安装 minicoda,各个版本的链接在这:https://repo.anaconda.com/miniconda/。选个自己需要的版本安装,我的版本是Miniconda3-py39_24.1.2-0-Linux-x86_64.sh

mkdir -p /opt/conda
wget https://repo.anaconda.com/miniconda/Miniconda3-py39_24.1.2-0-Linux-x86_64.sh -O /opt/conda/miniconda.sh \ && bash /opt/conda/miniconda.sh -b -p /opt/miniconda 
chmod +x /opt/conda/miniconda.sh
. /opt/miniconda/bin/activate

这时候会打开conda并创建base环境,说明我们安装成功。为了不每次打开conda都要运行. /opt/miniconda/bin/activate,我把它写在~/.bashrc里,然后source ~/.bashrc,这样打开的所有terminal都可以使用conda。
在这里插入图片描述

开始我们的深度学习吧 ~

### 如何在 Windows 11 上卸载 Docker 对于希望移除 Docker 的用户,在 Windows 11 中执行此操作涉及几个特定步骤。由于官方文档和其他资源可能不会特别针对 Windows 11 提供指导,下面的信息适用于较新的 Windows 版本。 #### 卸载 Docker Desktop 应用程序 要彻底清除 Docker 及其组件,应先通过控制面板中的“应用程序和功能”选项来卸载 Docker Desktop[^1]: - 打开设置 -> 应用 -> 应用和功能。 - 寻找列表里的 Docker 或者 Docker Desktop。 - 点击它并选择卸载按钮按照提示完成整个过程。 #### 移除残留文件夹与配置项 尽管上述方法会处理大部分安装内容,但仍可能存在一些遗留数据需要手动清理。这包括但不限于用户的 .docker 文件夹以及任何由 Docker 创建的虚拟机磁盘镜像等特殊路径下的文件[^4]: ```powershell Remove-Item -Recurse -Force "$env:USERPROFILE\.docker" ``` 这条命令可以用来删除位于用户目录下 `.docker` 文件夹内的所有内容;不过请注意谨慎使用 `Remove-Item` 命令以免误删重要资料。 另外需要注意的是如果之前是以 WSL2 后端运行,则还需要考虑是否要重置或重新配置相应的 Linux 发行版环境。 #### 清理注册表 (可选) 为了确保没有任何多余的条目影响系统的稳定性,可以选择性地清理 Windows 注册表中有关 Docker记录。但是这项工作风险较高建议创建系统还原点后再进行,并且只对熟悉该领域的人士推荐尝试。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值