Focal loss 代码复现

import numpy as np
import numpy.random
import torch
import torch.nn as nn
import torch.nn.functional as F


class FocalLoss(nn.Module):
    """
    copy from: https://github.com/Hsuxu/Loss_ToolBox-PyTorch/blob/master/FocalLoss/FocalLoss.py
    This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in
    'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)'
        Focal_Loss= -1*alpha*(1-pt)*log(pt)
    :param num_class:
    :param alpha: (tensor) 3D or 4D the scalar factor for this criterion
    :param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more
                    focus on hard misclassified example
    :param smooth: (float,double) smooth value when cross entropy
    :param balance_index: (int) balance class index, should be specific when alpha is float
    :param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch.
    """

    def __init__(self, apply_nonlin=None, alpha=None, gamma=2, balance_index=0, smooth=1e-5, size_average=True):
        super(FocalLoss, self).__init__()
        self.apply_nonlin = apply_nonlin
        self.alpha = alpha
        self.gamma = gamma
        self.balance_index = balance_index
        self.smooth = smooth
        self.size_average = size_average

        if self.smooth is not None:
            if self.smooth < 0 or self.smooth > 1.0:
                raise ValueError('smooth value should be in [0,1]')

    def forward(self, logit, target):
        if self.apply_nonlin is not None:
            logit = self.apply_nonlin(logit)
        num_class = logit.shape[1]

        if logit.dim() > 2:
            # N,C,d1,d2 -> N,C,m (m=d1*d2*...)
            logit = logit.view(logit.size(0), logit.size(1), -1)
            logit = logit.permute(0, 2, 1).contiguous()
            logit = logit.view(-1, logit.size(-1))
        target = torch.squeeze(target, 1)
        target = target.view(-1, 1)
        # print(logit.shape, target.shape)
        # 
        alpha = self.alpha

        if alpha is None:
            alpha = torch.ones(num_class, 1)
        elif isinstance(alpha, (list, np.ndarray)):
            assert len(alpha) == num_class
            alpha = torch.FloatTensor(alpha).view(num_class, 1)
            alpha = alpha / alpha.sum()
        elif isinstance(alpha, float):
            alpha = torch.ones(num_class, 1)
            alpha = alpha * (1 - self.alpha)
            alpha[self.balance_index] = self.alpha

        else:
            raise TypeError('Not support alpha type')
        
        if alpha.device != logit.device:
            alpha = alpha.to(logit.device)

        idx = target.cpu().long()

        one_hot_key = torch.FloatTensor(target.size(0), num_class).zero_()
        one_hot_key = one_hot_key.scatter_(1, idx, 1)
        if one_hot_key.device != logit.device:
            one_hot_key = one_hot_key.to(logit.device)

        if self.smooth:
            one_hot_key = torch.clamp(
                one_hot_key, self.smooth/(num_class-1), 1.0 - self.smooth)
        pt = (one_hot_key * logit).sum(1) + self.smooth
        logpt = pt.log()

        gamma = self.gamma

        alpha = alpha[idx]
        alpha = torch.squeeze(alpha)
        loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt

        if self.size_average:
            loss = loss.mean()
        else:
            loss = loss.sum()
        return loss


if __name__ == '__main__':
    loss = FocalLoss()
    x = torch.rand((1, 2, 512, 512))
    y = numpy.random.rand(1, 1, 512, 512)
    y = (y > 0.5).astype(int)
    y = torch.tensor(y)
    out = loss(x, y)
    print(out)

参考博客:

  1. focal loss 详解
  2. Pytorch中contiguous()函数理解
  3. scatter_()函数的详细介绍
  4. torch.clamp_()函数
  5. torch.pow()的使用举例
  6. python numpy中bool变量转为1或0
  7. PyTorch中的拷贝
  8. PyTorch:view() 与 reshape() 区别详解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值