YOLOV5中添加Task-Specific Context Decoupling

文章详细介绍了如何将TSCODE集成到Yolov5中,包括代码修改步骤,如插入类、修改函数,解决torch.concat报错问题,调整配置文件以及处理训练时的wandb错误。此外,建议使用最新版本的代码以减少兼容性问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注明:以下代码以及修改思路均来源于b站博主魔傀面具,特此感谢!魔导的主页奉上:

魔傀面具的个人空间_哔哩哔哩_bilibili

        撰写此文章的目的是记录改进代码的过程以及碰到的一些问题及解决方式,如有侵权,可联系我,我会将文章进行隐藏。

        更加细节的东西建议去b站听魔导讲解一下,此文章主要是对代码进行复现,不涉及任何理论知识。

Task-Specific Context Decoupling文章链接:2303.01047.pdf (arxiv.org)

完整代码链接:objectdetection_script/yolov5-TSCODE.py at master · z1069614715/objectdetection_script (github.com)

一、代码修改

 

### YOLOv5 Lightweight Neck Implementation and Optimization Techniques In object detection models like YOLOv5, the neck structure plays a crucial role in feature fusion between different layers. For lightweight implementations aimed at improving efficiency while maintaining performance, several strategies can be employed. #### Feature Pyramid Network (FPN) A common approach used within many detectors including lighter versions involves adopting or modifying FPNs. These networks aggregate multi-scale features from top-down pathways with lateral connections that help enhance small objects' detectability without significantly increasing computational cost[^1]. For instance: ```python class LiteNeck(nn.Module): def __init__(self, input_channels=256): super(LiteNeck, self).__init__() # Define operations for bottom-up path augmentation. self.bottom_up_convs = nn.Sequential( ConvBlock(input_channels), ... ) def forward(self, inputs): p3_out, p4_out, p5_out = inputs # Perform upsampling and concatenation as per standard FPN design but optimized. ... ``` #### Depthwise Separable Convolutions Replacing traditional convolutions with depthwise separable ones reduces parameter count drastically by decoupling spatial filtering from point-wise mixing of channels. This technique has been successfully applied not only in classification tasks but also proves beneficial when designing efficient detector components such as neck modules: ```python def dw_conv(in_ch, out_ch, kernel_size=3, stride=1, padding=1): return nn.Sequential( nn.Conv2d(in_ch, in_ch, kernel_size, stride=stride, groups=in_ch, bias=False, padding_mode='zeros'), nn.BatchNorm2d(in_ch), nn.ReLU(inplace=True), nn.Conv2d(in_ch, out_ch, 1, bias=False), # Pointwise convolution nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) # Incorporate into existing architecture where applicable. ``` #### Channel Shuffling Inspired by ShuffleNet's channel shuffle operation which promotes information flow across grouped channels after group convolutions, this method ensures better utilization of resources during inference time especially on mobile devices constrained by hardware capabilities. By integrating these optimizations tailored specifically towards reducing model size yet preserving accuracy levels comparable to their heavier counterparts, developers achieve faster processing speeds suitable for real-time applications requiring low latency responses.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凤酱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值