冲量(momentum)

在梯度下降时,学习率对搜索最小值产生一定的影响。

当学习率过大时,容易产生震荡,错过最优值;当学习率过小时,收敛速度就会十分缓慢。

冲量就可以缓解这一问题。

在普通的梯度下降法x += v中,每次x的更新量vv = - dx * lr,其中dx为目标函数func(x)x的一阶导数。当使用冲量时,则把每次x的更新量v考虑为本次的梯度下降量- dx * lr与上次x的更新量v乘上一个介于[0, 1]的因子momentum的和,即v = - dx * lr + v * momemtum

  • 当本次梯度下降- dx * lr的方向与上次更新量v的方向相同时,上次的更新量能够对本次的搜索起到一个正向加速的作用。
  • 当本次梯度下降- dx * lr的方向与上次更新量v的方向相反时,上次的更新量能够对本次的搜索起到一个减速的作用。

所以动量在学习率较小时可以起到一个加速收敛的作用,在学习率过大时减小收敛时的震荡幅度。

链接:https://www.jianshu.com/p/58b3fe300ecb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值