(10)MATLAB莱斯(Rician)衰落信道仿真1


前言

首先给出莱斯衰落信道模型,引入了莱斯因子K,并给出莱斯分布的概率密度函数公式。然后导出莱斯分布随机变量的仿真表示式,建立MATLAB仿真代码,并根据莱斯衰落变量估计得到其PDF。


一、莱斯分布随机变量

与瑞利衰落不同,当无线信道中存在一个直射路径信号分量时,接收信号的包络将不再服从瑞利分布,而是服从莱斯分布,此时的小尺度衰落称为莱斯衰落。莱斯衰落时刻i的衰落幅度ri可以表示为:

式1

其中β是直射路径分量的幅度,而xi和yi是服从均值为0、方差为σ^2的平稳高斯随机过程的样本。直射路径信号能量与散射路径信号能量的比值定义了所谓的Rician因子K,其表达式为

式2

莱斯信道的概率密度函数为:

式3

其中I0[.]是第一类零阶修正贝塞尔函数。

已知Rician分布的均方值为 2σ^2(K + 1),其中 σ^2是组成莱斯分布的高斯噪声过程的方差。另外,为了使信号功率和信噪比(SNR)一致,通常需要将莱斯分布的均方值设置为1,即 E{r^2} = 1。在满足E{r^2} = 1的条件下,式(1)可以写成以下形式:

式4

式中,xi和yi是具有方差σ^2=1的零均值平稳高斯随机过程的样本。
接下来,将根据式(4)给出生成莱斯衰落随机变量的MATLAB代码,并根据随机变量计算出其PDF的估计值。

高斯分布随机变量仿真可以参考:
(3)MATLAB生成高斯随机变量及其概率密度函数估计

二、仿真代码与结果

生成莱斯衰落随机变量的MATLAB代码,并根据随机变量计算出其PDF的估计值。

1.仿真代码

莱斯分布随机变量MATLAB代码如下:

clc
close all
clear all
%% 生成莱斯分布随机变量
Kdb = 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值