Promise.all解决同时请求同一接口,返回值渲染时间问题

语法:Promise.all(iterable);
参数:iterable
一个可迭代对象,如 Array 或 String。
返回值:如果传入的参数是一个空的可迭代对象,则返回一个已完成(already resolved)状态的 Promise。
如果传入的参数不包含任何 promise,则返回一个异步完成(asynchronously resolved) Promise。注意:Google Chrome 58 在这种情况下返回一个已完成(already resolved)状态的 Promise。
其它情况下返回一个处理中(pending)的Promise。这个返回的 promise 之后会在所有的 promise 都完成或有一个 promise 失败时异步地变为完成或失败。 见下方关于“Promise.all 的异步或同步”示例。返回值将会按照参数内的 promise 顺序排列,而不是由调用 promise 的完成顺序决定。
	let p = Promise.all( [await uploadFile(fileParams1),await uploadFile(fileParams2)])
					p.then(arr=>{
   
					}).catch((e)=>{
   
						console.log(e)
					}).finally(()=>{
   
						fileLoading.value = false
					})

Promise.all()使用

  1. Promise.all方法可以把多个promise实例包装成一个新的promise实例;
    Promise.all([promise1,promise2]):Promise—最终返回Promise实例;
  2. 全部加载成功 则返回所有promise实例中resolve()回来带的参数,按数组中一一对应的顺序所集合的数组
    若任意有一个失败 ,立即决议失败,将失败的promise实例(reject()中参数)传递给我们;
  3. 若Promise.all([ ])中,数组为空数组,则立即决议为成功执行resolve( );
  4. Promise.all可以将多个Promise实例包装成一个新的Promise实例。同时,成功和失败的返回值是不同的,成功的时候返回的是一个结果数组,而失败的时候则返回最先被reject失败状态的值。

数组项全部决议为成功时:

//Promise.all方法可以把多个promise实例 包装成一个新的promise实例
            //Promise.all([ promise1, promise2]) :Promise   接收一个数组,数组中的每一项都是promise实例,最终返回的也是一个promise实例
            
            //它分三种情况,第一种是数组中的所有promise都决议为成功的话,Promise.all就会决议为成功;
            //第二种是数组中任意一个promise实例决议为失败的时候,Promise.all就会立即决议为失败
            //第三种是Promise.all()中是一个空数组的时候,Promise.all就会立即决议为成功
            
            //模拟需要多个请求的数据,才能进行下一步操作的情况


            function getData1(){
   
                return new Promise( (resolve,reject) => {
   
                    setTimeout( () => {
   
                        console.log('第一条数据加载成功');
                        resolve('data1');
                    },1000)
                })
            }
            
            function getData2(){
   
                return new Promise( (resolve,reject) =>{
   
                    setTimeout( () => {
   
                        console.log('
内容概要:本文档详细介绍了在三台CentOS 7服务器(IP地址分别为192.168.0.157、192.168.0.158和192.168.0.159)上安装和配置Hadoop、Flink及其他大数据组件(如Hive、MySQL、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala)的具体步骤。首先,文档说明了环境准备,包括配置主机名映射、SSH免密登录、JDK安装等。接着,详细描述了Hadoop集群的安装配置,包括SSH免密登录、JDK配置、Hadoop环境变量设置、HDFS和YARN配置文件修改、集群启动与测试。随后,依次介绍了MySQL、Hive、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala和Flink的安装配置过程,包括解压、环境变量配置、配置文件修改、服务启动等关键步骤。最后,文档提供了每个组件的基本测试方法,确保安装成功。 适合人群:具备一定Linux基础和大数据组件基础知识的运维人员、大数据开发工程师以及系统管理员。 使用场景及目标:①为大数据平台建提供详细的安装指南,确保各组件能够顺利安装和配置;②帮助技术人员快速掌握Hadoop、Flink等大数据组件的安装与配置,提升工作效率;③适用于企业级大数据平台的建与维护,确保集群稳定运行。 其他说明:本文档不仅提供了详细的安装步骤,还涵盖了常见的配置项解释和故障排查建议。建议读者在安装过程中仔细阅读每一步骤,并根据实际情况调整配置参数。此外,文档中的命令和配置文件路径均为示例,实际操作时需根据具体环境进行适当修改。
在无线通信领域,天线阵列设计对于信号传播方向和覆盖范围的优化至关重要。本题要求设计一个广播电台的天线布局,形成特定的水平面波瓣图,即在东北方向实现最大辐射强度,在正东到正北的90°范围内辐射衰减最小且无零点;而在其余270°范围内允许出现零点,且正西和西南方向必须为零。为此,设计了一个由4个铅垂铁塔组成的阵列,各铁塔上的电流幅度相等,相位关系可自由调整,几何布置和间距不受限制。设计过程如下: 第一步:构建初级波瓣图 选取南北方向上的两个点源,间距为0.2λ(λ为电磁波波长),形成一个端射阵。通过调整相位差,使正南方向的辐射为零,计算得到初始相位差δ=252°。为了满足西南方向零辐射的要求,整体相位再偏移45°,得到初级波瓣图的表达式为E1=cos(36°cos(φ+45°)+126°)。 第二步:构建次级波瓣图 再选取一个点源位于正北方向,另一个点源位于西南方向,间距为0.4λ。调整相位差使西南方向的辐射为零,计算得到相位差δ=280°。同样整体偏移45°,得到次级波瓣图的表达式为E2=cos(72°cos(φ+45°)+140°)。 最终组合: 将初级波瓣图E1和次级波瓣图E2相乘,得到总阵的波瓣图E=E1×E2=cos(36°cos(φ+45°)+126°)×cos(72°cos(φ+45°)+140°)。通过编程实现计算并绘制波瓣图,可以看到三个阶段的波瓣图分别对应初级波瓣、次级波瓣和总波瓣,最终得到满足广播电台需求的总波瓣图。实验代码使用MATLAB编写,利用polar函数在极坐标下绘制波瓣图,并通过subplot分块显示不同阶段的波瓣图。这种设计方法体现了天线阵列设计的基本原理,即通过调整天线间的相对位置和相位关系,控制电磁波的辐射方向和强度,以满足特定的覆盖需求。这种设计在雷达、卫星通信和移动通信基站等无线通信系统中得到了广泛应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Coisini_甜柚か

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值