Prompt-Free Diffusion: Taking “Text” out of Text-to-Image Diffusion Models

  1. 问题引入
  • 在SD模型的基础之上,去掉text prompt,使用reference image作为生成图片语义的指导,optional structure image作为生成图片structure的指导来进行生成;
  • 使用SeeCoder来提取参考图片的embedding作为生成条件,且SeeCoder是可以重复使用的,可以直接集成到另外的T2I模型中;
  1. methods
    在这里插入图片描述
  • 使用SeeCoder代替CLIP text embedding;
  • SeeCoder包含三个部分,Backbone Encoder, Decoder, and Query Transformer,其中Backbone Encoder使用SWIN-L提取多尺度特征,该部分参数是冻结的;之后decoder使用卷积来使得多尺度特征通道数相同,然后进行flatten+concat,得到的结果通过self attn + ffn;之后Query Transformer输出视觉embedding;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值