Rng(逆元)

Rng

Problem Description
Avin is studying how to synthesize data. Given an integer n, he constructs an interval using the following method: he first generates a integer r between 1 and n (both inclusive) uniform-randomly, and then generates another integer l between 1 and r (both inclusive) uniform-randomly. The interval [l, r] is then constructed. Avin has constructed two intervals using the method above. He asks you what the probability that two intervals intersect is. You should print p* q(−1)(MOD 1, 000, 000, 007), while pq denoting the probability.

Input
Just one line contains the number n (1 ≤ n ≤ 1, 000, 000).

Output
Print the answer.

Sample Input

1
2

Sample Output

1
750000006

这题首先找到规律之后用逆元求解,规律为(n+1)/2n

求相交的概率就是求1-不相交的概率,因为两个区域一定是一个在左边一个在右边,从右边往左边枚举,分别有n-1,n-2,n-3,…,3,2,1,所以用求和公式得到n(n-1)/2 再除以一个他们的总的可能性n2,得到上面这个公式。

Code:

#include<iostream>
#include<vector>
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long ll;
const int p=1e9+7;
ll quickpow(ll a,ll b)
{

    ll ret=1;
    while(b!=0)
    {
        if(b&1)ret=ret*a%p;
        b>>=1;
        a=a*a%p;
    }
    return ret%p;
}
int main()
{
    int n;
    while(cin>>n)
    {
        ll ans=(n+1)*quickpow(2*n,p-2)%p;
        printf("%lld\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值