spaCy简介
spaCy语言模型包含了一些强大的文本分析功能,如词性标注和命名实体识别功能。目前spaCy免费支持的语言有:英文、德语、法语、西班牙语、葡萄语、意大利语和荷兰语,其他的语言也在慢慢的增长。对于spaCy处理中文文本(本文选取了《天龙八部》小说来示例)具体实现过程如下:
1、对文本进行分词处理并去除停用词保存成一个txt
首先,在导入spaCy相关模块后,需要加载中文处理包。然后读取小说数据,对天龙八部小说进行nlp处理,既包括:分词、向量化、词性标注、语法解析和命名实体识别,并对小说用符号“/”进行分隔。最后通过is_stop函数判断分词中的词语是否为停用词,去除掉停用词后把结果写入txt文件中,具体代码如下:
import spacy
import pandas as pd
import time
from spacy.lang.zh.stop_words import STOP_WORDS
nlp = spacy.load('zh_core_web_sm')
def fenci_stopwords(data,newdata1):
fenci = []
qc_stopwords =[]
article = pd.read_table(data,<