Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <sstream>
#include <vector>
#include <string>
#include <set>
#include <stack>
#include <map>
#include <queue>
#define ull unsigned long long
#define ll long long
using namespace std;
int to[2]={1,-1};
int a,b,sum;
int vis[100000];
struct place
{
int x,time;
};
int check(place k)
{
if(k.x<0||k.x>100000||vis[k.x]==1)
return 0;
return 1;
}
int bfs(place n)
{
place m,next;
queue<place>w;
w.push(n);
while(!w.empty())
{
m=w.front();//让m赋值为队列中的第一个元素
w.pop();
if(m.x==b)
return m.time;
for(int i=0;i<2;i++)
{
next.x=m.x+to[i];
next.time=m.time+1;
if(next.x==b)
return next.time;
if(check(next))
{
w.push(next);
vis[next.x]=1;
}
}
next.x=m.x*2;
next.time=m.time+1;
if(next.x==b)
return next.time;
if(check(next))
{
w.push(next);
vis[next.x]=1;
}
}
//return 0;
}
int main() {
//int i, j, t;
place x1;
while (~scanf("%d %d", &a, &b)) {
memset(vis, 0, sizeof(vis));
x1.x = a;
x1.time = 0;
vis[x1.x] = 1;
sum = 0;
sum = bfs(x1);
printf("%d\n", sum);
}
return 0;
}