StylizedGS: Controllable Stylization for 3D Gaussian Splatting(related work)

Image Style Transfer

Style transfer aims to generate synthetic images with the artistic style of given images while preserving content.

neural style transfer methods involves iteratively optimizing the output image using Gram matrix loss and content loss calculated from VGG-Net extracted features.

Subsequent works have explored alternative style loss formulations to enhance semantic consistency and capture high-frequency style details such as brushstrokes.

Feed-forward transfer methods, where neural networks are trained to capture style information from the style image and transfer it to the input image in a single forward pass, ensuring faster stylization.

Recent improvements in style loss involve replacing the globa

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

于初见月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值