学会使用原子操作CAS(Compare And Swap)

本文深入探讨了原子操作的概念及其实现方式,重点讲解了CAS(Compare and Swap)机制,包括其工作原理、优缺点及如何解决ABA问题。同时,介绍了JDK中提供的原子操作类,如AtomicInteger、AtomicReference等的使用方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是原子操作?

假定有两个操作A和B,如果从执行A的线程来看,当另一个线程执行B时,要么将B全部执行完,要么完全不执行B,那么A和B对彼此来说是原子的。

如何实现原子操作?

加锁

实现原子操作可以使用锁,锁机制,满足基本的需求是没有问题的了,但是有的时候我们的需求并非这么简单,我们需要更有效,更加灵活的机制,synchronized关键字是基于阻塞的锁机制,也就是说当一个线程拥有锁的时候,访问同一资源的其它线程需要等待,直到该线程释放锁。
这里会有些问题:首先,如果被阻塞的线程优先级很高很重要怎么办?其次,如果获得锁的线程一直不释放锁怎么办?(这种情况是非常糟糕的)。还有一种情况,如果有大量的线程来竞争资源,那CPU将会花费大量的时间和资源来处理这些竞争,同时,还有可能出现一些例如死锁之类的情况,最后,其实锁机制是一种比较粗糙,粒度比较大的机制,相对于像计数器这样的需求有点儿过于笨重。

CAS

实现原子操作还可以使用当前的处理器基本都支持CAS的指令,只不过每个厂家所实现的算法并不一样,每一个CAS操作过程都包含三个运算符:一个内存地址V,一个期望的值A和一个新值B,操作的时候如果这个地址上存放的值等于这个期望的值A,则将地址上的值赋为新值B,否则不做任何操作。
CAS的基本思路就是,如果这个地址上的值和期望的值相等,则给其赋予新值,否则不做任何事儿,但是要返回原值是多少。循环CAS就是在一个循环里不断的做CAS操作,直到成功为止。
CAS是怎么实现线程的安全呢?语言层面不做处理,我们将其交给硬件—CPU和内存,利用CPU的多处理能力,实现硬件层面的阻塞,再加上volatile变量的特性即可实现基于原子操作的线程安全。
在这里插入图片描述

CAS实现原子操作的三大问题

  • ABA问题
    因为CAS需要在操作值的时候,检查值有没有发生变化,如果没有发生变化则更新,但是如果一个值原来是A,变成了B,又变成了A,那么使用CAS进行检查时会发现它的值没有发生变化,但是实际上却变化了。
    ABA问题的解决思路就是使用版本号。在变量前面追加上版本号,每次变量更新的时候把版本号加1,那么A→B→A就会变成1A→2B→3A。
  • 循环时间长开销大。
    自旋CAS如果长时间不成功,会给CPU带来非常大的执行开销。
  • 只能保证一个共享变量的原子操作。
    当对一个共享变量执行操作时,我们可以使用循环CAS的方式来保证原子操作,但是对多个共享变量操作时,循环CAS就无法保证操作的原子性,这个时候就可以用锁。
    还有一个取巧的办法,就是把多个共享变量合并成一个共享变量来操作。比如,有两个共享变量i=2,j=a,合并一下ij=2a,然后用CAS来操作ij。从Java 1.5开始,JDK提供了AtomicReference类来保证引用对象之间的原子性,就可以把多个变量放在一个对象里来进行CAS操作。

JDK中相关原子操作类(java.util.concurrent.atomic)的使用

  • 更新基本类型类:AtomicBoolean,AtomicInteger,AtomicLong
  • 更新数组类:AtomicIntegerArray,AtomicLongArray,AtomicReferenceArray
  • 更新引用类型:AtomicReference,AtomicMarkableReference,AtomicStampedReference
  • 更新字段类: AtomicReferenceFieldUpdater,AtomicIntegerFieldUpdater,AtomicLongFieldUpdater

AtomicInteger

  • int addAndGet(int delta):以原子方式将输入的数值与实例中的值(AtomicInteger里的value)相加,并返回结果。
  • boolean compareAndSet(int expect,int update):如果输入的数值等于预期值,则以原子方式将该值设置为输入的值。
  • int getAndIncrement():以原子方式将当前值加1,注意,这里返回的是自增前的值。
  • int getAndSet(int newValue):以原子方式设置为newValue的值,并返回旧值。
    示例:
import java.util.concurrent.atomic.AtomicInteger;

/**
 *类说明:演示基本类型的原子操作类
 */
public class UseAtomicInt {
    static AtomicInteger ai = new AtomicInteger(10);

    public static void main(String[] args) {
       	System.out.println(ai.getAndIncrement());
        System.out.println(ai.incrementAndGet());
        System.out.println(ai.addAndGet(24));
    }
}

结果:

10
12
36

AtomicIntegerArray

主要是提供原子的方式更新数组里的整型,其常用方法如下。

  • int addAndGet(int i,int delta):以原子方式将输入值与数组中索引i的元素相加。
  • boolean compareAndSet(int i,int expect,int update):如果当前值等于预期值,则以原子方式将数组位置i的元素设置成update值。

需要注意的是,数组value通过构造方法传递进去,然后AtomicIntegerArray会将当前数组复制一份,所以当AtomicIntegerArray对内部的数组元素进行修改时,不会影响传入的数组。
示例:

import java.util.concurrent.atomic.AtomicIntegerArray;


/**
 *类说明:
 */
public class UseAtomicIntegerArray {
    static int[] value = new int[] { 1, 2 };
    static AtomicIntegerArray ai = new AtomicIntegerArray(value);
    public static void main(String[] args) {
        ai.getAndSet(0, 3);
        System.out.println(ai.get(0));
        System.out.println(value[0]);//原数组不会变化
        }
}

结果:

3
1

AtomicReference

示例:

import java.util.concurrent.atomic.AtomicReference;

/**
 *类说明:演示引用类型的原子操作类
 */
public class UseAtomicReference {
    static AtomicReference<UserInfo> atomicUserRef;
    public static void main(String[] args) {
        UserInfo user = new UserInfo("Mark", 15);//要修改的实体的实例
        atomicUserRef = new AtomicReference(user);
        UserInfo updateUser = new UserInfo("Bill",17);
        atomicUserRef.compareAndSet(user,updateUser);

        System.out.println(atomicUserRef.get());
        System.out.println(user);
    }
    
    //定义一个实体类
    static class UserInfo {
        private volatile String name;
        private int age;
        public UserInfo(String name, int age) {
            this.name = name;
            this.age = age;
        }
        public String getName() {
            return name;
        }
        public int getAge() {
            return age;
        }

        @Override
        public String toString() {
            return "UserInfo{" +
                    "name='" + name + '\'' +
                    ", age=" + age +
                    '}';
        }
    }

}

结果:

UserInfo{name='Bill', age=17}
UserInfo{name='Mark', age=15}

AtomicStampedReference

利用版本戳的形式记录了每次改变以后的版本号,这样的话就不会存在ABA问题了。这就是AtomicStampedReference的解决方案。AtomicMarkableReference跟AtomicStampedReference差不多, AtomicStampedReference是使用pair的int stamp作为计数器使用,AtomicMarkableReference的pair使用的是boolean mark。
示例:

/**
 *类说明:演示带版本戳的原子操作类
 */
public class UseAtomicStampedReference {
    static AtomicStampedReference<String> asr
            = new AtomicStampedReference("mark",0);

    public static void main(String[] args) throws InterruptedException {
        //拿到当前的版本号(旧)
        final int oldStamp = asr.getStamp();
        final String oldReference = asr.getReference();
        System.out.println(oldReference+"============"+oldStamp);

        Thread rightStampThread = new Thread(() ->
                System.out.println(Thread.currentThread().getName()+":当前变量值:"
                +oldReference + "-当前版本戳:" + oldStamp + "-"
                        + asr.compareAndSet(oldReference,
                oldReference + "+Java", oldStamp,
                oldStamp + 1)));

        Thread errorStampThread = new Thread(() -> {
            String reference = asr.getReference();
            System.out.println(Thread.currentThread().getName()
                    +":当前变量值:"
                    +reference + "-当前版本戳:" + asr.getStamp() + "-"
                    + asr.compareAndSet(reference,
                    reference + "+C", oldStamp,
                    oldStamp + 1));
        });
        rightStampThread.start();
        rightStampThread.join();
        errorStampThread.start();
        errorStampThread.join();

        System.out.println(asr.getReference()+"============"+asr.getStamp());
    }
}

结果:

mark============0
Thread-0:当前变量值:mark-当前版本戳:0-true
Thread-1:当前变量值:mark+Java-当前版本戳:1-false
mark+Java============1

AtomicMarkableReference

原子更新带有标记位的引用类型。可以原子更新一个布尔类型的标记位和引用类型。构造方法是AtomicMarkableReference(V initialRef,booleaninitialMark)。

【并发编程】目录:

【并发编程】之走进Java里的线程世界

【并发编程】之学会使用线程的并发工具类

【并发编程】之学会使用原子操作CAS

【并发编程】之深入理解显式锁和AQS

【并发编程】之一文彻底搞懂并发容器

【并发编程】之Java面试经常会问到的线程池,你搞清楚了吗?

【并发编程】之Java并发安全知识点总结

【并发编程】之大厂很可能会问到的JMM底层实现原理

<think>嗯,用户让我介绍一下Java中的Compare and SwapCAS)机制。首先,我需要回想一下CAS的基本概念。CAS是一种并发编程中常用的技术,用于实现无锁的数据结构,避免使用传统的锁机制,从而提高性能。Java中的CAS操作主要是在java.util.concurrent包中的类里使用,比如AtomicInteger、AtomicLong等原子类。 接下来,我要确定用户可能的知识背景。可能用户已经了解多线程编程的基本概念,比如线程安全、竞态条件等,但可能对具体的无锁机制不太熟悉。需要解释清楚CAS的工作原理,以及它在Java中的具体应用。 然后,我应该解释CAS的三个操作数:内存位置V,旧的预期值A,和新值B。当执行CAS操作时,只有当V的值等于A时,才会将V的值更新为B,否则不进行任何操作。无论是否更新,都会返回V原来的值。这个过程是原子性的,由底层硬件支持,比如通过CPU的CAS指令实现,比如在Intel处理器中的CMPXCHG指令。 需要强调CAS的优点,比如避免线程阻塞,减少上下文切换,提高高并发场景下的性能。但也要提到它的缺点,比如ABA问题。ABA问题是指一个值原来是A,被改为B,然后又改回A,这时候CAS检查时会认为值没有变化,但实际上可能发生了其他操作。为了解决这个问题,Java提供了AtomicStampedReference和AtomicMarkableReference,通过引入版本号或标记来避免ABA问题。 接下来,可能需要给出一个Java中使用CAS的例子,比如AtomicInteger的incrementAndGet方法,内部就是通过CAS实现的。可以展示一下代码示例,说明如何通过循环不断尝试更新,直到成功为止。 另外,用户可能想知道CAS在Java中的底层实现,比如Unsafe类的使用,但要注意从Java 9开始,Unsafe类被逐渐限制使用,转而使用VarHandle等更安全的API。不过大部分情况下,开发者直接使用原子类即可,无需关心底层实现。 还要考虑用户可能的疑问,比如为什么CAS比锁更高效。锁会导致线程挂起和恢复,涉及内核态的操作,而CAS在用户态完成,没有线程切换的开销。不过在高竞争的情况下,CAS可能导致大量重试,消耗CPU资源,这时候可能锁更适合。 最后,总结CAS的应用场景,比如计数器、队列的实现等,以及注意事项,比如ABA问题和自旋时间长的问题。确保用户理解CAS的适用场景和限制。</think>在 Java 中,**Compare and Swap (CAS)** 是一种用于实现无锁并发操作的关键技术。它通过硬件级别的原子指令(如 CPU 的 `CMPXCHG`)保证操作的线程安全性,避免了传统锁机制(如 `synchronized`)带来的上下文切换和阻塞开销。 --- ### **CAS 核心原理** CAS 操作包含三个参数: 1. **内存位置(V)**:要修改的共享变量(如 `AtomicInteger` 的值) 2. **旧的预期值(A)**:线程认为变量当前应该具有的值 3. **新值(B)**:希望将变量更新为的值 **执行过程**: - 如果内存位置 `V` 的当前值等于预期值 `A`,则将 `V` 更新为 `B`,并返回 `true`。 - 否则不修改值,返回 `false`。 整个过程是**原子性**的,由底层硬件直接支持。 --- ### **Java 中的 CAS 实现** Java 通过 `sun.misc.Unsafe` 类(底层 API)或更高层的原子类(如 `AtomicInteger`)封装 CAS 操作: #### 示例:`AtomicInteger` 的自增 ```java AtomicInteger count = new AtomicInteger(0); count.incrementAndGet(); // 内部通过 CAS 实现自增 ``` 底层 `incrementAndGet()` 的简化逻辑: ```java public final int incrementAndGet() { int expect; do { expect = get(); // 获取当前值 } while (!compareAndSet(expect, expect + 1)); // 循环尝试 CAS return expect + 1; } ``` --- ### **CAS 的优缺点** #### **优点**: 1. **无锁并发**:避免线程阻塞,减少上下文切换,适合高并发场景。 2. **高性能**:在低竞争环境下,效率远高于锁。 #### **缺点**: 1. **ABA 问题**: 如果一个值从 `A` → `B` → `A`,CAS 无法感知中间变化。 **解决方案**:使用 `AtomicStampedReference` 添加版本号标记。 2. **自旋开销**:高竞争时,CAS 失败重试可能导致 CPU 空转。 3. **单变量限制**:只能保证单个变量的原子性,无法处理复合操作。 --- ### **ABA 问题示例** 假设线程 1 读取共享变量值为 `A`,准备将其改为 `B`。在此期间,线程 2 将 `A` → `B` → `A`。线程 1 的 CAS 会误认为变量未变化,导致逻辑错误。 **解决方式**:使用 `AtomicStampedReference` 记录版本号: ```java AtomicStampedReference<Integer> ref = new AtomicStampedReference<>(100, 0); int stamp = ref.getStamp(); ref.compareAndSet(100, 101, stamp, stamp + 1); // 同时检查值和版本号 ``` --- ### **CAS 的应用场景** 1. 原子类(如 `AtomicInteger`、`AtomicLong`) 2. 无锁队列(如 `ConcurrentLinkedQueue`) 3. 乐观锁实现(如数据库版本号控制) 4. JUC 工具类(如 `CountDownLatch`、`Semaphore` 的底层实现) --- ### **总结** CAS 是 Java 实现高效并发的基石,通过硬件原子指令避免了锁的开销,但需注意其适用场景和潜在问题(如 ABA)。实际开发中,优先使用 `java.util.concurrent.atomic` 包中的原子类,而非直接操作底层 API。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值