ATTENTION, LEARN TO SOLVE ROUTING PROBLEMS!

Motivation: Policies in  Heuristic algorithms can be parameterized using deep neural network, and be trained via reinforcement to obtain new and stronger algorithms for many different combinatorial optimization problems.

Related work: 

The application of Neural Networks (NNs) for optimizing decisions in combinatorial optimization problems dates back to Hopfield & Tank (1985), who applied a Hopfield-network for solving small TSP instances.

Pointer Network (PN) for (Euclidean) TSP

Graph Neural Network in a supervised manner
Encoder:
Attetion layer: 
MHA, FF, skip-connection, batch normalization (BN).
Training:
REINFORCE WITH GREEDY ROLLOUT BASELINE
baseline: to estimate the difficulty of an instance or problem.
A good baseline reduces gradient variance and increase the speed of learning.
If one instance is difficult to solve and 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值