LIO-SLAM 代码详细注释三imuPreintegration.cpp

该代码实现ROS环境下基于GTSAM库的IMU预积分与雷达里程计融合,通过订阅IMU和雷达里程计消息,进行数据处理和融合,发布融合后的里程计信息。类`TransformFusion`处理雷达里程计,`IMUPreintegration`处理IMU数据并进行优化。使用ISAM2进行非线性优化,维护系统状态并实时更新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

imuPreintegration.cpp

#include "utility.h"
#include <Eigen/Core>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/navigation/GPSFactor.h>
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/inference/Symbol.h>

#include <gtsam/nonlinear/ISAM2.h>
#include <gtsam_unstable/nonlinear/IncrementalFixedLagSmoother.h>

using gtsam::symbol_shorthand::X; // Pose3 (x,y,z,r,p,y)
using gtsam::symbol_shorthand::V; // Vel   (xdot,ydot,zdot)
using gtsam::symbol_shorthand::B; // Bias  (ax,ay,az,gx,gy,gz)

class TransformFusion : public ParamServer
{
public:
    std::mutex mtx;
    //创建IMU 雷达里程计订阅话题
    ros::Subscriber subImuOdometry;
    ros::Subscriber subLaserOdometry;
//创建IMU 里程计发布话题
    ros::Publisher pubImuOdometry;
    ros::Publisher pubImuPath;

    Eigen::Affine3f lidarOdomAffine;
    Eigen::Affine3f imuOdomAffineFront;
    Eigen::Affine3f imuOdomAffineBack;

    tf::TransformListener tfListener;
    tf::StampedTransform lidar2Baselink;

    double lidarOdomTime = -1;
    deque<nav_msgs::Odometry> imuOdomQueue;

    TransformFusion()
    {
        if(lidarFrame != baselinkFrame)
        {
            try
            {
                tfListener.waitForTransform(lidarFrame, baselinkFrame, ros::Time(0), ros::Duration(3.0));
                tfListener.lookupTransform(lidarFrame, baselinkFrame, ros::Time(0), lidar2Baselink);
            }
            catch (tf::TransformException ex)
            {
                ROS_ERROR("%s",ex.what());
            }
        }
        //订阅里程计odometry话题 和 imu_incremental
        subLaserOdometry = nh.subscribe<nav_msgs::Odometry>("lio_sam/mapping/odometry", 5, &TransformFusion::lidarOdometryHandler, this, ros::TransportHints().tcpNoDelay());
        subImuOdometry   = nh.subscribe<nav_msgs::Odometry>(odomTopic+"_incremental",   2000, &TransformFusion::imuOdometryHandler,   this, ros::TransportHints().tcpNoDelay());

        pubImuOdometry   = nh.advertise<nav_msgs::Odometry>(odomTopic, 2000);
        pubImuPath       = nh.advertise<nav_msgs::Path>    ("lio_sam/imu/path", 1);
    }

    Eigen::Affine3f odom2affine(nav_msgs::Odometry odom)
    {
        double x, y, z, roll, pitch, yaw;
        x = odom.pose.pose.position.x;
        y = odom.pose.pose.position.y;
        z = odom.pose.pose.position.z;
        tf::Quaternion orientation;
        tf::quaternionMsgToTF(odom.pose.pose.orientation, orientation);
        tf::Matrix3x3(orientation).getRPY(roll, pitch, yaw);
        return pcl::getTransformation(x, y, z, roll, pitch, yaw);
    }
   //保存雷达里程计数据和时间
    void lidarOdometryHandler(const nav_msgs::Odometry::ConstPtr& odomMsg)
    {
        //给线程加锁
        std::lock_guard<std::mutex> lock(mtx);
        //将nav_msgs里程计信息转仿射矩阵,
        lidarOdomAffine = odom2affine(*odomMsg);
        //读取里程计时间
        lidarOdomTime = odomMsg->header.stamp.toSec();
    }
   
    void imuOdometryHandler(const nav_msgs::Odometry::ConstPtr& odomMsg)
    {
        // static tf
        static tf::TransformBroadcaster tfMap2Odom;
        //初始化地图到里程计的转换矩阵
        static tf::Transform map_to_odom = tf::Transform(tf::createQuaternionFromRPY(0, 0, 0), tf::Vector3(0, 0, 0));
        //插入时间,话题,fram
        tfMap2Odom.sendTransform(tf::StampedTransform(map_to_odom, odomMsg->header.stamp, mapFrame, odometryFrame));
        //线程加锁
        std::lock_guard<std::mutex> lock(mtx);
        //发布里程计信息
        imuOdomQueue.push_back(*odomMsg);

        // get latest odometry (at current IMU stamp)
        if (lidarOdomTime == -1)//时间无效
            return;
        while (!imuOdomQueue.empty())
        {   //确保IMU时间在激光里程计内
            if (imuOdomQueue.front().header.stamp.toSec() <= lidarOdomTime)
                imuOdomQueue.pop_front();
            else
                break;
        }
        Eigen::Affine3f imuOdomAffineFront = odom2affine(imuOdomQueue.front());//IMU前
        Eigen::Affine3f imuOdomAffineBack = odom2affine(imuOdomQueue.back());//IMU后
        Eigen::Affine3f imuOdomAffineIncre = imuOdomAffineFront.inverse() * imuOdomAffineBack;//IMU变化量
        Eigen::Affine3f imuOdomAffineLast = lidarOdomAffine * imuOdomAffineIncre;//雷达位姿矫正
        float x, y, z, roll, pitch, yaw;
        pcl::getTranslationAndEulerAngles(imuOdomAffineLast, x, y, z, roll, pitch, yaw);//获得旋转矩阵和欧拉角
        
        // publish latest odometry 发布里程计信息
        nav_msgs::Odometry laserOdometry = imuOdomQueue.back();
        laserOdometry.pose.pose.position.x = x;
        laserOdometry.pose.pose.position.y = y;
        laserOdometry.pose.pose.position.z = z;
        laserOdometry.pose.pose.orientation = tf::createQuaternionMsgFromRollPitchYaw(roll, pitch, yaw);//由欧拉角转四元数
        pubImuOdometry.publish(laserOdometry);

        // publish tf  里程计到机器人的变换
        static tf::TransformBroadcaster tfOdom2BaseLink;
        tf::Transform tCur;
        tf::poseMsgToTF(laserOdometry.pose.pose, tCur);//位姿转旋转矩阵
        if(lidarFrame != baselinkFrame)
            tCur = tCur * lidar2Baselink;//旋转矩阵累乘 里程计到机器人的变换信息
            //里程计到机器人的变换
        tf::StampedTransform odom_2_baselink = tf::StampedTransform(tCur, odomMsg->header.stamp, odometryFrame, baselinkFrame);
        tfOdom2BaseLink.sendTransform(odom_2_baselink);

        // publish IMU path
        static nav_msgs::Path imuPath;
        static double last_path_time = -1;//默认时间值-1为无效值
        double imuTime = imuOdomQueue.back().header.stamp.toSec();//读取队头时间
        if (imuTime - last_path_time > 0.1)//相隔时间大于0.1
        {
            last_path_time = imuTime;//上一刻更新时间
            geometry_msgs::PoseStamped pose_stamped;//几何位姿信息
            pose_stamped.header.stamp = imuOdomQueue.back().header.stamp;//记录时间戳
            pose_stamped.header.frame_id = odometryFrame;//父节点
            pose_stamped.pose = laserOdometry.pose.pose;//里程计位姿
            imuPath.poses.push_back(pose_stamped);//存放到IMU路径
            //路径为空,或者IMU队前的时间-1不在雷达时间内,则清空IMU路径(从队头开始)
            while(!imuPath.poses.empty() && imuPath.poses.front().header.stamp.toSec() < lidarOdomTime - 1.0)
                imuPath.poses.erase(imuPath.poses.begin());
            if (pubImuPath.getNumSubscribers() != 0)//检测到接受器,则发布信息
            {
                imuPath.header.stamp = imuOdomQueue.back().header.stamp;//定义时间戳
                imuPath.header.frame_id = odometryFrame;//父节点
                pubImuPath.publish(imuPath);
            }
        }
    }
};

class IMUPreintegration : public ParamServer
{
public:
     
    // std::mutex不允许拷贝构造,也不允许 move 拷贝,最初产生的 mutex 对象是处于 unlocked 状态的。
    // lock(),调用线程将锁住该互斥量。线程调用该函数会发生下面 3 种情况:
    // (1). 如果该互斥量当前没有被锁住,则调用线程将该互斥量锁住,直到调用 unlock之前,该线程一直拥有该锁。
    // (2). 如果当前互斥量被其他线程锁住,则当前的调用线程被阻塞住。
    // (3). 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)。
    std::mutex mtx;
    //订阅IMU和里程计信息,发布IMU里程计信息
    ros::Subscriber subImu;
    ros::Subscriber subOdometry;
    ros::Publisher pubImuOdometry;

    bool systemInitialized = false;
    //Gtsam 是一个在机器人领域和计算机领域用于平滑和建图的C++库
    //采用因子图和贝叶斯网络的方式最大化后验概率
    gtsam::noiseModel::Diagonal::shared_ptr priorPoseNoise;//先验位姿噪声
    gtsam::noiseModel::Diagonal::shared_ptr priorVelNoise;//先验速度噪声
    gtsam::noiseModel::Diagonal::shared_ptr priorBiasNoise;//先验偏差噪声
    gtsam::noiseModel::Diagonal::shared_ptr correctionNoise;//矫正噪声
    gtsam::noiseModel::Diagonal::shared_ptr correctionNoise2;
    gtsam::Vector noiseModelBetweenBias;//偏差噪声模型


    gtsam::PreintegratedImuMeasurements *imuIntegratorOpt_;//IMU积分优化器
    gtsam::PreintegratedImuMeasurements *imuIntegratorImu_;

    std::deque<sensor_msgs::Imu> imuQueOpt;
    std::deque<sensor_msgs::Imu> imuQueImu;

    gtsam::Pose3 prevPose_;//估计位姿
    gtsam::Vector3 prevVel_;//估计速度
    gtsam::NavState prevState_;//估计状态
    gtsam::imuBias::ConstantBias prevBias_;//估计偏差

    gtsam::NavState prevStateOdom;
    gtsam::imuBias::ConstantBias prevBiasOdom;

    bool doneFirstOpt = false;//完成第一次优化标记位
    double lastImuT_imu = -1;//IMU时间有效标记
    double lastImuT_opt = -1;//优化有效标记位

    gtsam::ISAM2 optimizer;//优化器
    gtsam::NonlinearFactorGraph graphFactors;//非线性因子图
    gtsam::Values graphValues;// ISAM需要优化参数

    const double delta_t = 0;

    int key = 1;
    //初始化IMU和雷达之间相对姿态
    gtsam::Pose3 imu2Lidar = gtsam::Pose3(gtsam::Rot3(1, 0, 0, 0), gtsam::Point3(-extTrans.x(), -extTrans.y(), -extTrans.z()));
    gtsam::Pose3 lidar2Imu = gtsam::Pose3(gtsam::Rot3(1, 0, 0, 0), gtsam::Point3(extTrans.x(), extTrans.y(), extTrans.z()));

    IMUPreintegration()
    {
        subImu      = nh.subscribe<sensor_msgs::Imu>  (imuTopic,                   2000, &IMUPreintegration::imuHandler,      this, ros::TransportHints().tcpNoDelay());
        subOdometry = nh.subscribe<nav_msgs::Odometry>("lio_sam/mapping/odometry_incremental", 5,    &IMUPreintegration::odometryHandler, this, ros::TransportHints().tcpNoDelay());

        pubImuOdometry = nh.advertise<nav_msgs::Odometry> (odomTopic+"_incremental", 2000);

        boost::shared_ptr<gtsam::PreintegrationParams> p = gtsam::PreintegrationParams::MakeSharedU(imuGravity);
        //噪声协方差
        p->accelerometerCovariance  = gtsam::Matrix33::Identity(3,3) * pow(imuAccNoise, 2); // acc white noise in continuous
        p->gyroscopeCovariance      = gtsam::Matrix33::Identity(3,3) * pow(imuGyrNoise, 2); // gyro white noise in continuous
        p->integrationCovariance    = gtsam::Matrix33::Identity(3,3) * pow(1e-4, 2); // error committed in integrating position from velocities
        gtsam::imuBias::ConstantBias prior_imu_bias((gtsam::Vector(6) << 0, 0, 0, 0, 0, 0).finished());; // assume zero initial bias

        priorPoseNoise  = gtsam::noiseModel::Diagonal::Sigmas((gtsam::Vector(6) << 1e-2, 1e-2, 1e-2, 1e-2, 1e-2, 1e-2).finished()); // rad,rad,rad,m, m, m
        priorVelNoise   = gtsam::noiseModel::Isotropic::Sigma(3, 1e4); // m/s
        priorBiasNoise  = gtsam::noiseModel::Isotropic::Sigma(6, 1e-3); // 1e-2 ~ 1e-3 seems to be good
        correctionNoise = gtsam::noiseModel::Diagonal::Sigmas((gtsam::Vector(6) << 0.05, 0.05, 0.05, 0.1, 0.1, 0.1).finished()); // rad,rad,rad,m, m, m
        correctionNoise2 = gtsam::noiseModel::Diagonal::Sigmas((gtsam::Vector(6) << 1, 1, 1, 1, 1, 1).finished()); // rad,rad,rad,m, m, m
        noiseModelBetweenBias = (gtsam::Vector(6) << imuAccBiasN, imuAccBiasN, imuAccBiasN, imuGyrBiasN, imuGyrBiasN, imuGyrBiasN).finished();
        
        imuIntegratorImu_ = new gtsam::PreintegratedImuMeasurements(p, prior_imu_bias); // setting up the IMU integration for IMU message thread
        imuIntegratorOpt_ = new gtsam::PreintegratedImuMeasurements(p, prior_imu_bias); // setting up the IMU integration for optimization        
    }

    void resetOptimization()
    {
        //设置iSAM参数,并将参数输入ISAM优化函数
        gtsam::ISAM2Params optParameters;                //创建优化参数
        optParameters.relinearizeThreshold = 0.1;        //重新线性化阈值       
        optParameters.relinearizeSkip = 1;               //重新线性化步长
        optimizer = gtsam::ISAM2(optParameters);

        //.定义需要优化的图和优化的参数
        gtsam::NonlinearFactorGraph newGraphFactors;
        graphFactors = newGraphFactors;

        gtsam::Values NewGraphValues;
        graphValues = NewGraphValues;
    }

    void resetParams()
    {
        lastImuT_imu = -1;
        doneFirstOpt = false;
        systemInitialized = false;
    }

    void odometryHandler(const nav_msgs::Odometry::ConstPtr& odomMsg)
    {
        //std::lock_guard,与 Mutex RAII 相关,方便线程对互斥量上锁。
        std::lock_guard<std::mutex> lock(mtx);

        double currentCorrectionTime = ROS_TIME(odomMsg);

        // make sure we have imu data to integrate,检查数据是否为空
        if (imuQueOpt.empty())
            return;

        float p_x = odomMsg->pose.pose.position.x;
        float p_y = odomMsg->pose.pose.position.y;
        float p_z = odomMsg->pose.pose.position.z;
        float r_x = odomMsg->pose.pose.orientation.x;
        float r_y = odomMsg->pose.pose.orientation.y;
        float r_z = odomMsg->pose.pose.orientation.z;
        float r_w = odomMsg->pose.pose.orientation.w;
        bool degenerate = (int)odomMsg->pose.covariance[0] == 1 ? true : false;
        gtsam::Pose3 lidarPose = gtsam::Pose3(gtsam::Rot3::Quaternion(r_w, r_x, r_y, r_z), gtsam::Point3(p_x, p_y, p_z));


        // 0. initialize system
        if (systemInitialized == false)
        {
            resetOptimization();

            // pop old IMU message
            while (!imuQueOpt.empty())
            {   //IMU数据靠前,不在时间段内,释放队列前
                if (ROS_TIME(&imuQueOpt.front()) < currentCorrectionTime - delta_t)
                {
                    lastImuT_opt = ROS_TIME(&imuQueOpt.front());
                    imuQueOpt.pop_front();
                }
                else
                    break;
            }
            // initial pose 转IMU坐标系下
            prevPose_ = lidarPose.compose(lidar2Imu);
            //一元因子 系统先验 添加位姿因子         key :加入SYMBOL保证独一性(操作简单)
            //                        类型              key    边的值      噪声模型
            gtsam::PriorFactor<gtsam::Pose3> priorPose(X(0), prevPose_, priorPoseNoise);

            //添加到图优化里面
            graphFactors.add(priorPose);
            // initial velocity
            prevVel_ = gtsam::Vector3(0, 0, 0);
            //添加速度因子
            gtsam::PriorFactor<gtsam::Vector3> priorVel(V(0), prevVel_, priorVelNoise);
            graphFactors.add(priorVel);
            // initial bias
            prevBias_ = gtsam::imuBias::ConstantBias();
            //添加偏差因子
            gtsam::PriorFactor<gtsam::imuBias::ConstantBias> priorBias(B(0), prevBias_, priorBiasNoise);
            graphFactors.add(priorBias);
            // add values
            //添加节点
            graphValues.insert(X(0), prevPose_);
            graphValues.insert(V(0), prevVel_);
            graphValues.insert(B(0), prevBias_);
            // optimize once 进行优化
            optimizer.update(graphFactors, graphValues);
            //对图重置
            graphFactors.resize(0);
            graphValues.clear();

            imuIntegratorImu_->resetIntegrationAndSetBias(prevBias_);
            imuIntegratorOpt_->resetIntegrationAndSetBias(prevBias_);
            
            key = 1;
            systemInitialized = true;
            return;
        }


        // reset graph for speed
        //key值为100 优化一次,然后重置
        if (key == 100)
        {
            // get updated noise before reset
            //
            gtsam::noiseModel::Gaussian::shared_ptr updatedPoseNoise = gtsam::noiseModel::Gaussian::Covariance(optimizer.marginalCovariance(X(key-1)));
            gtsam::noiseModel::Gaussian::shared_ptr updatedVelNoise  = gtsam::noiseModel::Gaussian::Covariance(optimizer.marginalCovariance(V(key-1)));
            gtsam::noiseModel::Gaussian::shared_ptr updatedBiasNoise = gtsam::noiseModel::Gaussian::Covariance(optimizer.marginalCovariance(B(key-1)));
            // reset graph  重置优化图的参数和设定参数
            resetOptimization();
            // add pose
            gtsam::PriorFactor<gtsam::Pose3> priorPose(X(0), prevPose_, updatedPoseNoise);
            graphFactors.add(priorPose);
            // add velocity
            gtsam::PriorFactor<gtsam::Vector3> priorVel(V(0), prevVel_, updatedVelNoise);
            graphFactors.add(priorVel);
            // add bias
            //一元因子 系统先验 添加位姿因子                 key :加入SYMBOL保证独一性(操作简单)
            //                        类型                             key    边的值      噪声模型
            gtsam::PriorFactor<gtsam::imuBias::ConstantBias> priorBias(B(0), prevBias_, updatedBiasNoise);
            graphFactors.add(priorBias);
            // add values
            graphValues.insert(X(0), prevPose_);
            graphValues.insert(V(0), prevVel_);
            graphValues.insert(B(0), prevBias_);
            // optimize once
            optimizer.update(graphFactors, graphValues);
            graphFactors.resize(0);
            graphValues.clear();

            key = 1;
        }


        // 1. integrate imu data and optimize
        while (!imuQueOpt.empty())
        {
            // pop and integrate imu data that is between two optimizations
            sensor_msgs::Imu *thisImu = &imuQueOpt.front();
            double imuTime = ROS_TIME(thisImu);
            // 对早于当前odom数据的imu数据进行积分,imu为观测值
            if (imuTime < currentCorrectionTime - delta_t)//IMU数据还在时间队列内
            {
                double dt = (lastImuT_opt < 0) ? (1.0 / 500.0) : (imuTime - lastImuT_opt);
                 // 进行预积分得到新的状态值  注意用到的是imu数据的加速度 角速度
                // 作者要求的9轴imu数据中欧拉角在本程序文件中没有任何用到 全在地图优化里用到的
                //调用Gtsam 积分器,对IMU角度和加速度进行积分
                imuIntegratorOpt_->integrateMeasurement(
                        gtsam::Vector3(thisImu->linear_acceleration.x, thisImu->linear_acceleration.y, thisImu->linear_acceleration.z),
                        gtsam::Vector3(thisImu->angular_velocity.x,    thisImu->angular_velocity.y,    thisImu->angular_velocity.z), dt);
                
                lastImuT_opt = imuTime;//更新上一次被优化的时间
                imuQueOpt.pop_front(); //释放已经优化的IMU数据
            }
            else
                break;
        }
        // add imu factor to graph
        //进行预积分IMU数据 
        const gtsam::PreintegratedImuMeasurements& preint_imu = dynamic_cast<const gtsam::PreintegratedImuMeasurements&>(*imuIntegratorOpt_);
        //在两个点的时间戳之间IMU积分因子
        gtsam::ImuFactor imu_factor(X(key - 1), V(key - 1), X(key), V(key), B(key - 1), preint_imu);
        //添加IMU因子到图
        graphFactors.add(imu_factor); 
        // add imu bias between factor 添加两个时间戳之间的噪声因子
        graphFactors.add(gtsam::BetweenFactor<gtsam::imuBias::ConstantBias>(B(key - 1), B(key), gtsam::imuBias::ConstantBias(),
        //                                            随机噪声                   预积分时间                 噪声模型
                         gtsam::noiseModel::Diagonal::Sigmas(sqrt(imuIntegratorOpt_->deltaTij()) * noiseModelBetweenBias)));
        // add pose factor,定义雷达到IMU的相对位姿
        gtsam::Pose3 curPose = lidarPose.compose(lidar2Imu);
        //定义位姿因子                                               根据噪声协方差矩阵       非单位矩阵               单位矩阵噪声模型
        gtsam::PriorFactor<gtsam::Pose3> pose_factor(X(key), curPose, degenerate ? correctionNoise2 : correctionNoise);
        //添加位姿因子
        graphFactors.add(pose_factor);
        // insert predicted values
        //插入预测值到图的节点
        gtsam::NavState propState_ = imuIntegratorOpt_->predict(prevState_, prevBias_);
        graphValues.insert(X(key), propState_.pose());
        graphValues.insert(V(key), propState_.v());
        graphValues.insert(B(key), prevBias_);
        // optimize进行优化
        optimizer.update(graphFactors, graphValues);
        optimizer.update();
        //重置优化器因子和值
        graphFactors.resize(0);
        graphValues.clear();
        // Overwrite the beginning of the preintegration for the next step.
        //用优化结果来更新预估计值,为下一步优化进行准备
        gtsam::Values result = optimizer.calculateEstimate();
        prevPose_  = result.at<gtsam::Pose3>(X(key));
        prevVel_   = result.at<gtsam::Vector3>(V(key));
        prevState_ = gtsam::NavState(prevPose_, prevVel_);
        prevBias_  = result.at<gtsam::imuBias::ConstantBias>(B(key));
        // Reset the optimization preintegration object.
        imuIntegratorOpt_->resetIntegrationAndSetBias(prevBias_);
        // check optimization 
        //检测优化是否正常 否则重置参数
        if (failureDetection(prevVel_, prevBias_))
        {
            resetParams();
            return;
        }


        // 2. after optiization, re-propagate imu odometry preintegration
        //为了维持实时性,优化后立即获取最新的偏置bias值结果,同时IMU测量值执行bias改变,进行重传播
        prevStateOdom = prevState_;
        prevBiasOdom  = prevBias_;
        // first pop imu message older than current correction data
        double lastImuQT = -1;//初始化无效值
        //如果IMU时间队列时间有效
        while (!imuQueImu.empty() && ROS_TIME(&imuQueImu.front()) < currentCorrectionTime - delta_t)
        {
            //读取当前IMU队头时间
            lastImuQT = ROS_TIME(&imuQueImu.front());
            imuQueImu.pop_front();
        }
        // repropogate
        if (!imuQueImu.empty())
        {
            // reset bias use the newly optimized bias
            //进行二次积分,bias是已经更新了的
            imuIntegratorImu_->resetIntegrationAndSetBias(prevBiasOdom);
            // integrate imu message from the beginning of this optimization
            for (int i = 0; i < (int)imuQueImu.size(); ++i)
            {
                //读取IMU队列每个成员时间,进行积分
                //这里与上面同样代码区别是这里更新的bias
                sensor_msgs::Imu *thisImu = &imuQueImu[i];
                double imuTime = ROS_TIME(thisImu);
                double dt = (lastImuQT < 0) ? (1.0 / 500.0) :(imuTime - lastImuQT);

                imuIntegratorImu_->integrateMeasurement(gtsam::Vector3(thisImu->linear_acceleration.x, thisImu->linear_acceleration.y, thisImu->linear_acceleration.z),
                                                        gtsam::Vector3(thisImu->angular_velocity.x,    thisImu->angular_velocity.y,    thisImu->angular_velocity.z), dt);
                lastImuQT = imuTime;//更新已经被更新的的时间
            }
        }

        ++key;
        doneFirstOpt = true;
    }

    bool failureDetection(const gtsam::Vector3& velCur, const gtsam::imuBias::ConstantBias& biasCur)
    {
        Eigen::Vector3f vel(velCur.x(), velCur.y(), velCur.z());
        if (vel.norm() > 30)
        {
            ROS_WARN("Large velocity, reset IMU-preintegration!");
            return true;
        }

        Eigen::Vector3f ba(biasCur.accelerometer().x(), biasCur.accelerometer().y(), biasCur.accelerometer().z());
        Eigen::Vector3f bg(biasCur.gyroscope().x(), biasCur.gyroscope().y(), biasCur.gyroscope().z());
        if (ba.norm() > 1.0 || bg.norm() > 1.0)
        {
            ROS_WARN("Large bias, reset IMU-preintegration!");
            return true;
        }

        return false;
    }

    void imuHandler(const sensor_msgs::Imu::ConstPtr& imu_raw)
    {   //锁住线程--------------------------------------------------------------------------------关联到哪里
        std::lock_guard<std::mutex> lock(mtx);
        //iMU数据旋转到雷达坐标下,主要根据IMU传感器属性,作者IMU YAW是反向的,只做旋转
        sensor_msgs::Imu thisImu = imuConverter(*imu_raw);

        imuQueOpt.push_back(thisImu);
        imuQueImu.push_back(thisImu);
        //执行完第一次优化后才进行后续预测
        if (doneFirstOpt == false)
            return;
        //获取thisIMU的时间 msg->header.stamp.toSec
        double imuTime = ROS_TIME(&thisImu);
        //第一次是1/500,后面都是IMU相隔时间
        double dt = (lastImuT_imu < 0) ? (1.0 / 500.0) : (imuTime - lastImuT_imu);
        lastImuT_imu = imuTime;

        // integrate this single imu message 积分
        imuIntegratorImu_->integrateMeasurement(gtsam::Vector3(thisImu.linear_acceleration.x, thisImu.linear_acceleration.y, thisImu.linear_acceleration.z),
                                                gtsam::Vector3(thisImu.angular_velocity.x,    thisImu.angular_velocity.y,    thisImu.angular_velocity.z), dt);

        // predict odometry 获取估计值,设为当前状态
        gtsam::NavState currentState = imuIntegratorImu_->predict(prevStateOdom, prevBiasOdom);

        // publish odometry
        nav_msgs::Odometry odometry;
        odometry.header.stamp = thisImu.header.stamp;
        odometry.header.frame_id = odometryFrame;
        odometry.child_frame_id = "odom_imu";

        // transform imu pose to ldiar 将IMU位姿转到雷达坐标系上
        gtsam::Pose3 imuPose = gtsam::Pose3(currentState.quaternion(), currentState.position());
        gtsam::Pose3 lidarPose = imuPose.compose(imu2Lidar);
        //求得里程计信息
        odometry.pose.pose.position.x = lidarPose.translation().x();
        odometry.pose.pose.position.y = lidarPose.translation().y();
        odometry.pose.pose.position.z = lidarPose.translation().z();
        odometry.pose.pose.orientation.x = lidarPose.rotation().toQuaternion().x();
        odometry.pose.pose.orientation.y = lidarPose.rotation().toQuaternion().y();
        odometry.pose.pose.orientation.z = lidarPose.rotation().toQuaternion().z();
        odometry.pose.pose.orientation.w = lidarPose.rotation().toQuaternion().w();
        
        odometry.twist.twist.linear.x = currentState.velocity().x();
        odometry.twist.twist.linear.y = currentState.velocity().y();
        odometry.twist.twist.linear.z = currentState.velocity().z();
        //加上偏差
        odometry.twist.twist.angular.x = thisImu.angular_velocity.x + prevBiasOdom.gyroscope().x();
        odometry.twist.twist.angular.y = thisImu.angular_velocity.y + prevBiasOdom.gyroscope().y();
        odometry.twist.twist.angular.z = thisImu.angular_velocity.z + prevBiasOdom.gyroscope().z();
        pubImuOdometry.publish(odometry);
    }
};


int main(int argc, char** argv)
{
    ros::init(argc, argv, "roboat_loam");
    
    IMUPreintegration ImuP;

    TransformFusion TF;

    ROS_INFO("\033[1;32m----> IMU Preintegration Started.\033[0m");
    
    ros::MultiThreadedSpinner spinner(4);
    spinner.spin();
    
    return 0;
}

参考博文:
https://bbs.youkuaiyun.com/topics/398260808
https://zhuanlan.zhihu.com/p/182408931
https://zhuanlan.zhihu.com/p/57351961
https://zhuanlan.zhihu.com/p/111388877

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值