HDU - 1159 Common Subsequence (最长公共子序列,DP)

本文探讨了最长公共子序列(LCS)问题,这是一种经典的计算机科学问题,常见于字符串比较和生物信息学等领域。文章详细介绍了如何使用动态规划解决LCS问题,并提供了一个C++实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, …, xm> another sequence Z = <z1, z2, …, zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, …, ik> of indices of X such that for all j = 1,2,…,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Input
abcfbc abfcab
programming contest
abcd mnp
Output
4
2
0
Sample Input
abcfbc abfcab
programming contest
abcd mnp
Sample Output
4
2
0
问题链接http://acm.hdu.edu.cn/showproblem.php?pid=1159
问题简述:输入两串字符串,求其中最长公共子序列
问题分析:很明显的DP题啦。状态转移方程:if(p1[i-1]==p2[i-1]) dp[i][j]=dp[i-1][j-1]+1
else dp[i][j]=max(dp[i-1][j],dp[i][j-1])
我觉得这篇博客讲的挺好https://blog.youkuaiyun.com/u010579068/article/details/49207347
AC通过的C++语言程序如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include <algorithm>
#include<string.h>
#include<stdio.h>
using namespace std;
const int m = 1000;
int dp[m + 5][m + 5];
char p1[m];
char p2[m];
void DP(int x,int y)
{
	for (int i = 1; i <= x; i++)
	{
		for (int j = 1; j <= y; j++)
		{
			if (p1[i - 1] == p2[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + 1; }
			else { dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]); }
		}
	}
	return;
}
int main()
{
	while (cin >> p1 >> p2)
	{
		memset(dp, NULL, sizeof(dp));
		int len1 = strlen(p1);
		int len2 = strlen(p2);
		DP(len1, len2);
		cout << dp[len1][len2] << endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值