Common Subsequence(HDU-1159)

Common Subsequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 37077    Accepted Submission(s): 16977


Problem Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
 

Sample Input
  
  
abcfbc abfcab programming contest abcd mnp
 

Sample Output
  
  
4 2 0
 

题目大意:

给你两串字符串,求出最长的相同序列,此序列不一定相邻,如所给例子一,最长相同序列为 abfc。

解题思路:

DP的类型题,状态转移方程很巧妙,给当前的两个字符串都加一个字符:

①如果两个字符不一样,那么对原来的状态没有改变,最长长度为备选的两个 ”最长子序列 “中较长的那个。

②如果两个字符都一样,那么“最长子序列”是之前的“最长子序列”长度+1。

即:

dp[i][j]=dp[i-1][j-1]+1;(a[i]==b[j])

dp[i][j]=max(dp[i-1][j],dp[i][j-1])(a[i]!=b[j]);

PS:把两个数组分别作为行列建立二维数组可能会更直观一些,最后二维数组最右下角的值一定是最大值!

代码如下:

#include<cstdio>
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
using namespace std;
string a,b;
int dp[1001][1001];
int DP();
int main()
{
	while(cin>>a>>b)
	{
		memset(dp,0,sizeof(dp));
		printf("%d\n",DP());
	}
	return 0;
}
int DP()
{
	int hang = a.length();
	int lie = b.length();
	for(int i=0 ; i<hang ; i++)
	{
		for(int j=0 ; j<lie ; j++)
		{
			if(a[i]==b[j]) dp[i+1][j+1] = dp[i][j]+1;
			else dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]);
		}
	}
	return dp[hang][lie];
}









题目传送门。。。。。






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值