numpy学习笔记(3)——统计学函数

Order statistics

amin(a[, axis, out, keepdims, initial, where])	Return the minimum of an array or minimum along an axis.
amax(a[, axis, out, keepdims, initial, where])	Return the maximum of an array or maximum along an axis.
nanmin(a[, axis, out, keepdims])	Return minimum of an array or minimum along an axis, ignoring any NaNs.
nanmax(a[, axis, out, keepdims])	Return the maximum of an array or maximum along an axis, ignoring any NaNs.
ptp(a[, axis, out, keepdims])	Range of values (maximum - minimum) along an axis.
percentile(a, q[, axis, out, …])	Compute the q-th percentile of the data along the specified axis.
nanpercentile(a, q[, axis, out, …])	Compute the qth percentile of the data along the specified axis, while ignoring nan values.
quantile(a, q[, axis, out, overwrite_input, …])	Compute the q-th quantile of the data along the specified axis.
nanquantile(a, q[, axis, out, …])	Compute the qth quantile of the data along the specified axis, while ignoring nan values.

Averages and variances

median(a[, axis, out, overwrite_input, keepdims])	Compute the median along the specified axis.
average(a[, axis, weights, returned])	Compute the weighted average along the specified axis.
mean(a[, axis, dtype, out, keepdims])	Compute the arithmetic mean along the specified axis.
std(a[, axis, dtype, out, ddof, keepdims])	Compute the standard deviation along the specified axis.
var(a[, axis, dtype, out, ddof, keepdims])	Compute the variance along the specified axis.
nanmedian(a[, axis, out, overwrite_input, …])	Compute the median along the specified axis, while ignoring NaNs.
nanmean(a[, axis, dtype, out, keepdims])	Compute the arithmetic mean along the specified axis, ignoring NaNs.
nanstd(a[, axis, dtype, out, ddof, keepdims])	Compute the standard deviation along the specified axis, while ignoring NaNs.
nanvar(a[, axis, dtype, out, ddof, keepdims])	Compute the variance along the specified axis, while ignoring NaNs.

Correlating

corrcoef(x[, y, rowvar, bias, ddof])	Return Pearson product-moment correlation coefficients.
correlate(a, v[, mode])	Cross-correlation of two 1-dimensional sequences.
cov(m[, y, rowvar, bias, ddof, fweights, …])	Estimate a covariance matrix, given data and weights
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值