爆改YOLOv8|利用图像分割网络UNetV2改进yolov8主干-即插即用

1,本文介绍

U-Net v2 通过引入创新的跳跃连接设计来提升医学图像分割的精度。这一版本专注于更有效地融合不同层级的特征,包括高级特征中的语义信息和低级特征中的细节信息。通过这种优化,U-Net v2 能够在低级特征中注入丰富的语义,同时细化高级特征,从而实现更精准的对象边界描绘和小结构提取。

其主要技术创新包括:

  • 多级特征提取:使用深度神经网络编码器从输入图像中提取不同层次的特征。
  • 语义与细节融合(Semantics and Detail Infusion, SDI)模块:通过哈达玛积操作,将高级特征中的语义信息与低级特征中的细节信息融合到各层级的特征图中。
  • 改进的跳跃连接:这些新型跳跃连接增强了各层特征的语义和细节表现,从而在解码器阶段实现更高精度的分割。

关于UNetV2的详细介绍可以看论文:https://arxiv.org/abs/2311.17791

本文将讲解如何将UNetV2融合进yolov8

话不多说,上代码!

2, 将UNetV2融合进yolov8

2.1 步骤一

找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个UNetV2.py文件,文件名字可以根据你自己的习惯起,然后将UNetV2的核心代码复制进去


import os.path
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
import math
 
__all__ = ['pvt_v2_b0', 'pvt_v2_b1', 'pvt_v2_b2', 'pvt_v2_b3', 'pvt_v2_b4', 'pvt_v2_b5']
 
class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)
 
        self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False)
 
        self.sigmoid = nn.Sigmoid()
 
    def forward(self, x):
        avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
        out = avg_out + max_out
        return self.sigmoid(out)
 
 
class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()
 
        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1
 
        self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()
 
    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat([avg_out, max_out], dim=1)
        x = self.conv1(x)
        return self.sigmoid(x)
 
 
class BasicConv2d(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1):
        super(BasicConv2d, self).__init__()
 
        self.conv = nn.Conv2d(in_planes, out_planes,
                              kernel_size=kernel_size, stride=stride,
                              padding=padding, dilation=dilation, bias=False)
        self.bn = nn.BatchNorm2d(out_planes)
        self.relu = nn.ReLU(inplace=True)
 
    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x
 
 
class Encoder(nn.Module):
    def __init__(self, pretrain_path):
        super().__init__()
        self.backbone = pvt_v2_b2()
 
        if pretrain_path is None:
            warnings.warn('please provide the pretrained pvt model. Not using pretrained model.')
        elif not os.path.isfile(pretrain_path):
            warnings.warn(f'path: {pretrain_path} does not exists. Not using pretrained model.')
        else:
            print(f"using pretrained file: {pretrain_path}")
            save_model = torch.load(pretrain_path)
            model_dict = self.backbone.state_dict()
            state_dict = {k: v for k, v in save_model.items() if k in model_dict.keys()}
            model_dict.update(state_dict)
 
            self.backbone.load_state_dict(model_dict)
 
    def forward(self, x):
        f1, f2, f3, f4 = self.backbone(x)  # (x: 3, 352, 352)
        return f1, f2, f3, f4
 
 
class SDI(nn.Module):
    def __init__(self, channel):
        super().__init__()
 
        self.convs = nn.ModuleList(
            [nn.Conv2d(channel, channel, kernel_size=3, stride=1, padding=1) for _ in range(4)])
 
    def forward(self, xs, anchor):
        ans = torch.ones_like(anchor)
        target_size = anchor.shape[-1]
 
        for i, x in enumerate(xs):
            if x.shape[-1] > target_size:
                x = F.adaptive_avg_pool2d(x, (target_size, target_size))
            elif x.shape[-1] < target_size:
                x = F.interpolate(x, size=(target_size, target_size),
                                      mode='bilinear', align_corners=True)
 
            ans = ans * self.convs[i](x)
 
        return ans
 
 
class UNetV2(nn.Module):
    """
    use SpatialAtt + ChannelAtt
    """
    def __init__(self, channel=3, n_classes=1, deep_supervision=True, pretrained_path=None):
        super().__init__()
        self.deep_supervision = deep_supervision
 
        self.encoder = Encoder(pretrained_path)
 
        self.ca_1 = ChannelAttention(64)
        self.sa_1 = SpatialAttention()
 
        self.ca_2 = ChannelAttention(128)
        self.sa_2 = SpatialAttention()
 
        self.ca_3 = ChannelAttention(320)
        self.sa_3 = SpatialAttention()
 
        self.ca_4 = ChannelAttention(512)
        self.sa_4 = SpatialAttention()
 
        self.Translayer_1 = BasicConv2d(64, channel, 1)
        self.Translayer_2 = BasicConv2d(128, channel, 1)
        self.Translayer_3 = BasicConv2d(320, channel, 1)
        self.Translayer_4 = BasicConv2d(512, channel, 1)
 
        self.sdi_1 = SDI(channel)
        self.sdi_2 = SDI(channel)
        self.sdi_3 = SDI(channel)
        self.sdi_4 = SDI(channel)
 
        self.seg_outs = nn.ModuleList([
            nn.Conv2d(channel, n_classes, 1, 1) for _ in range(4)])
 
        self.deconv2 = nn.ConvTranspose2d(channel, channel, kernel_size=4, stride=2, padding=1,
                                          bias=False)
        self.deconv3 = nn.ConvTranspose2d(channel, channel, kernel_size=4, stride=2,
                                          padding=1, bias=False)
        self.deconv4 = nn.ConvTranspose2d(channel, channel, kernel_size=4,
### YOLO模型中的分割任务损失函数改进 YOLO作为一种统一的物体检测框架,在设计上追求简单性和高效性[^1]。然而,对于涉及像素级预测的任务如语义分割或实例分割,原始YOLO架构并不直接适用。为了适应这些更复杂的视觉识别需求,研究者们提出了多种针对YOLO损失函数的改进方案。 #### 结合边界框回归与分类误差 传统YOLO通过单一网络完成多个目标定位和类别预测任务,其损失函数主要由两部分组成:负责位置估计的坐标误差项以及处理类别的置信度得分项。当扩展到图像分割领域时,可以在原有基础上增加额外的空间一致性约束来提升区域划分精度: ```python def improved_yolo_loss(y_true, y_pred): # 原始YOLO损失计算... # 新增空间一致性的惩罚因子 spatial_consistency_penalty = compute_spatial_consistency(y_true, y_pred) total_loss = original_yolo_loss + alpha * spatial_consistency_penalty return total_loss ``` 此处`compute_spatial_consistency()`用于衡量相邻像素间标签分配的一致程度,参数`alpha`控制新引入成分的重要性权重[^2]。 #### 利用全局上下文信息增强特征表达能力 考虑到YOLO能够利用整幅图片的信息来进行推理这一特性[^3],可以进一步强化这一点以善分割效果。具体做法是在骨干网路末端加入注意力机制模块,使得模型更加关注于那些有助于区分不同对象边界的局部细节: ```python class AttentionModule(nn.Module): def forward(self, x): ... # 将Attention Module嵌入至YOLO Backbone之后 backbone_output = backbone(input_image) attended_features = attention_module(backbone_output) segmentation_map = segmentation_head(attended_features) ``` 这种策略不仅提高了最终输出的质量,同时也保留了实时处理速度的优势。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值