爆改YOLOv8|使用MobileViTv1替换Backbone

1,本文介绍

MobileNetV1 是一种轻量级卷积神经网络,旨在提高计算效率。它的核心是深度可分离卷积,将传统卷积分解为深度卷积和逐点卷积,从而减少计算量和参数量。网络结构包括初始卷积层、多个深度可分离卷积层、全局平均池化层和全连接层。MobileNetV1 的设计使其在资源受限的设备上如移动设备上表现出色,适用于图像分类、目标检测等任务,平衡了模型大小与性能,广泛应用于需要高效处理的深度学习场景。

关于MobileViTv1的详细介绍可以看论文:https://arxiv.org/abs/2110.02178

本文将讲解如何将MobileViTv1融合进yolov8

话不多说,上代码!

2, 将MobileViTv1融合进yolov8

2.1 步骤一

首先找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个MobileNetV1.py文件,文件名字可以根据你自己的习惯起,然后将MobileNetV1的核心代码复制进去。


"""
original code from apple:
https://github.com/apple/ml-cvnets/blob/main/cvnets/models/classification/mobilevit.py
"""
import math
import numpy as np
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn import functional as F
from typing import  Tuple,  Dict, Sequence
from typing import Union, Optional
 
__all__ = ['mobile_vit_small', 'mobile_vit_x_small', 'mobile_vit_xx_small']
def make_divisible(
        v: Union[float, int],
        divisor: Optional[int] = 8,
        min_value: Optional[Union[float, int]] = None,
) -> Union[float, int]:
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by 8
    It can be seen here:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
    :param v:
    :param divisor:
    :param min_value:
    :return:
    """
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v
 
 
def bound_fn(
        min_val: Union[float, int], max_val: Union[float, int], value: Union[float, int]
) -> Union[float, int]:
    return max(min_val, min(max_val, value))
 
 
def get_config(mode: str = "xxs") -> dict:
    width_multiplier = 0.5
    ffn_multiplier = 2
    layer_0_dim = bound_fn(min_val=16, max_val=64, value=32 * width_multiplier)
    layer_0_dim = int(make_divisible(layer_0_dim, divisor=8, min_value=16))
    # print("layer_0_dim: ", layer_0_dim)
    if mode == "xx_small":
        mv2_exp_mult = 2
        config = {
            "layer1": {
                "out_channels": 16,
                "expand_ratio": mv2_exp_mult,
                "num_blocks": 1,
                "stride": 1,
                "block_type": "mv2",
            },
            "layer2": {
                "out_channels": 24,
                "expand_ratio": mv2_exp_mult,
                "num_blocks": 3,
                "stride": 2,
                "block_type": "mv2",
            },
            "layer3": {  # 28x28
                "out_channels": 48,
                "transformer_channels": 64,
                "ffn_dim": 128,
                "transformer_blocks": 2,
                "patch_h": 2,  # 8,
                "patch_w": 2,  # 8,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "num_heads": 4,
                "block_type": "mobilevit",
            },
            "layer4": {  # 14x14
                "out_channels": 64,
                "transformer_channels": 80,
                "ffn_dim": 160,
                "transformer_blocks": 4,
                "patch_h": 2,  # 4,
                "patch_w": 2,  # 4,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "num_heads": 4,
                "block_type": "mobilevit",
            },
            "layer5": {  # 7x7
                "out_channels": 80,
                "transformer_channels": 96,
                "ffn_dim": 192,
                "transformer_blocks": 3,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "num_heads": 4,
                "block_type": "mobilevit",
            },
            "last_layer_exp_factor": 4,
            "cls_dropout": 0.1
        }
    elif mode == "x_small":
        mv2_exp_mult = 4
        config = {
            "layer1": {
                "out_channels": 32,
                "expand_ratio": mv2_exp_mult,
                "num_blocks": 1,
                "stride": 1,
                "block_type": "mv2",
            },
            "layer2": {
                "out_channels": 48,
                "expand_ratio": mv2_exp_mult,
                "num_blocks": 3,
                "stride": 2,
                "block_type": "mv2",
            },
            "layer3": {  # 28x28
                "out_channels": 64,
                "transformer_channels": 96,
                "ffn_dim": 192,
                "transformer_blocks": 2,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "num_heads": 4,
                "block_type": "mobilevit",
            },
            "layer4": {  # 14x14
                "out_channels": 80,
                "transformer_channels": 120,
                "ffn_dim": 240,
                "transformer_blocks": 4,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "num_heads": 4,
                "block_type": "mobilevit",
            },
            "layer5": {  # 7x7
                "out_channels": 96,
                "transformer_channels": 144,
                "ffn_dim": 288,
                "transformer_blocks": 3,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "num_heads": 4,
                "block_type": "mobilevit",
            },
            "last_layer_exp_factor": 4,
            "cls_dropout": 0.1
        }
    elif mode == "small":
        mv2_exp_mult = 4
        config = {
            "layer1": {
                "out_channels": 32,
                "expand_ratio": mv2_exp_mult,
                "num_blocks": 1,
                "stride": 1,
                "block_type": "mv2",
            },
            "layer2": {
                "out_channels": 64,
                "expand_ratio": mv2_exp_mult,
                "num_blocks": 3,
                "stride": 2,
                "block_type": "mv2",
            },
            "layer3": {  # 28x28
                "out_channels": 96,
                "transformer_channels": 144,
                "ffn_dim": 288,
                "transformer_blocks": 2,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "num_heads": 4,
                "block_type": "mobilevit",
            },
            "layer4": {  # 14x14
                "out_channels": 128,
                "transformer_channels": 192,
                "ffn_dim": 384,
                "transformer_blocks": 4,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "num_heads": 4,
                "block_type": "mobilevit",
            },
            "layer5": {  # 7x7
                "out_channels": 160,
                "transformer_channels": 240,
                "ffn_dim": 480,
                "transformer_blocks": 3,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "num_heads": 4,
                "block_type": "mobilevit",
            },
            "last_layer_exp_factor": 4,
            "cls_dropout": 0.1
        }
    elif mode == "2xx_small":
        mv2_exp_mult = 2
        config = {
            "layer0": {
                "img_channels": 3,
                "out_channels": layer_0_dim,
            },
            "layer1": {
                "out_channels": int(make_divisible(64 * width_multiplier, divisor=16)),
                "expand_ratio": mv2_exp_mult,
                "num_blocks": 1,
                "stride": 1,
                "block_type": "mv2",
            },
            "layer2": {
                "out_channels": int(make_divisible(128 * width_multiplier, divisor=8)),
                "expand_ratio": mv2_exp_mult,
                "num_blocks": 2,
                "stride": 2,
                "block_type": "mv2",
            },
            "layer3": {  # 28x28
                "out_channels": int(make_divisible(256 * width_multiplier, divisor=8)),
                "attn_unit_dim": int(make_divisible(128 * width_multiplier, divisor=8)),
                "ffn_multiplier": ffn_multiplier,
                "attn_blocks": 2,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "block_type": "mobilevit",
            },
            "layer4": {  # 14x14
                "out_channels": int(make_divisible(384 * width_multiplier, divisor=8)),
                "attn_unit_dim": int(make_divisible(192 * width_multiplier, divisor=8)),
                "ffn_multiplier": ffn_multiplier,
                "attn_blocks": 4,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "block_type": "mobilevit",
            },
            "layer5": {  # 7x7
                "out_channels": int(make_divisible(512 * width_multiplier, divisor=8)),
                "attn_unit_dim": int(make_divisible(256 * width_multiplier, divisor=8)),
                "ffn_multiplier": ffn_multiplier,
                "attn_blocks": 3,
                "patch_h": 2,
                "patch_w": 2,
                "stride": 2,
                "mv_expand_ratio": mv2_exp_mult,
                "block_type": "mobilevit",
            },
            "last_layer_exp_factor": 4,
        }
    else:
        raise NotImplementedError
 
    for k in ["layer1", "layer2", "layer3", "layer4", "layer5"]:
        config[k].update({"dropout": 0.1, "ffn_dropout": 0.0, "attn_dropout": 0.0})
 
    return config
 
 
class ConvLayer(nn.Module):
    """
    Applies a 2D convolution over an input
    Args:
        in_channels (int): :math:`C_{in}` from an expected input of size :math:`(N, C_{in}, H_{in}, W_{in})`
        out_channels (int): :math:`C_{out}` from an expected output of size :math:`(N, C_{out}, H_{out}, W_{out})`
        kernel_size (Union[int, Tuple[int, int]]): Kernel size for convolution.
        stride (Union[int, Tuple[int, int]]): Stride for convolution. Default: 1
        groups (Optional[int]): Number of groups in convolution. Default: 1
        bias (Optional[bool]): Use bias. Default: ``False``
        use_norm (Optional[bool]): Use normalization layer after convolution. Default: ``True``
        use_act (Optional[bool]): Use activation layer after convolution (or convolution and normalization).
                                Default: ``Tr
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值