1,本文介绍
本文探讨了将 SENetV2 的稠密聚合层与 SE 模块结合,应用于 YOLOv8,以提升特征表达能力和目标检测性能。SENetV2 通过 Squeeze-and-Excitation(SE)模块优化通道和全局特征,从而提高分类准确率。文章详细介绍了 SENetV2 的结构和核心代码,并阐述了如何将其集成到 YOLOv8 中以及进行配置。
关于SENetV2的详细介绍可以看论文:https://arxiv.org/pdf/2311.10807.pdf
本文将讲解如何将SENetV2融合进yolov8
话不多说,上代码!
2, 将SENetV2融合进yolov8
2.1 步骤一
找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个SENetV2.py文件,文件名字可以根据你自己的习惯起,然后将SENetV2的核心代码复制进去
import torch
import torch.nn as nn
from .conv import Conv
# 定义SE模块
class SELayer(nn.Module):
def __init__(self, channel, reduction=16):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y.expand_as(x)
# 定义SaE模块
class SELayerV2(nn.Module):
def __init__(self, in_channel, reduction=32):
super(SELayerV2, self).__init__()
assert in_channel>=reduction and in_channel%reduction==0,'invalid in_channel in SaElayer'
self.reduction = reduction
self.cardinality=4
self.avg_pool = nn.AdaptiveAvgPool2d(1)
#cardinality 1
self.fc1 = nn.Sequential(
nn.Linear(in_channel,in_channel//self.reduction, bias=False),
nn.ReLU(inplace=True)
)
# cardinality 2
self.fc2 = nn.Sequential(
nn.Linear(in_channel, in_