此题系中科大2016年分析与代数科目的考研题,由一位爱喝蓝胖子的网友向我提问…个人试解如下
ProblemProblemProblem
设∑n=1∞an\displaystyle\sum_{n=1}^{\infty}a_{n}n=1∑∞an为正项级数,如果存在α\alphaα和β>0,\beta>0,β>0,使得an−an+1≥βan2−αa_{n}-a_{n+1}\geq \beta a_{n}^{2-\alpha}an−an+1≥βan2−α,证明:
(1).an(1).a_n(1).an单调递减趋于000,且α≤1\alpha\leq 1α≤1.
(2).∑n=1∞an<+∞(2).\displaystyle\sum_{n=1}^{\infty}a_{n}<+\infty(2).n=1∑∞an<+∞,且∑n=N∞an=O(aNα),N→∞\displaystyle\sum_{n=N}^{\infty}a_{n}=O(a_{N}^{\alpha}),N\to\inftyn=N∑∞an=O(aNα),N→∞.
ProofProofProof:
(1)
首先容易判断出limn→∞an=a>0\underset{n\to\infty}{lim}a_n=a>0n→∞liman=a>0存在且ana_nan严格单调递减
(i)(i)(i)若α≥2\alpha\geq 2α≥2,则an2−α≥a12−αa_{n}^{2-\alpha}\geq a_{1}^{2-\alpha}an2−α≥a12−α(∀n∈z+\forall n\in \mathbb{z}^+∀n∈z+)
从而a1=∑n=1∞(an−an+1)+aa_1=\sum_{n=1}^{\infty}(a_n-a_{n+1})+aa1=∑n=1∞(an−an+1)+a≥nβa12−α+a→+∞(n→+∞)\geq n\beta a_1^{2-\alpha}+a\to +\infty(n\to +\infty)≥nβa12−α+a→+∞(n→+∞)
(ii)(ii)(ii)若1<α<21<\alpha<21<α<2,则
\qquadan−an+1an2−α≥β\frac{a_{n}-a_{n+1}}{a_{n}^{2-\alpha}}\geq \betaan2−αan−an+1≥β⇒∫an+1an1x2−αdx≥β\Rightarrow \int_{a_{n+1}}^{a_{n}}\frac{1}{x^{2-\alpha}}dx\geq \beta⇒∫an+1anx2−α1dx≥β(∀n∈Z+)(\forall n\in \mathbb{Z}^+)(∀n∈Z+)
\qquad\qquad\qquad\quad ⇒∫an+1a11x2−αdx≥nβ\Rightarrow \int_{a_{n+1}}^{a_{1}}\frac{1}{x^{2-\alpha}}dx\geq n\beta⇒∫an+1a1x2−α1dx≥nβ→+∞(n→+∞)\to +\infty(n\to +\infty)→+∞(n→+∞)
综上知0<α≤10<\alpha\leq 10<α≤1.此时
0≤limn→∞βan2−α≤limn→∞(an−an+1)=0
0\le \underset{n\rightarrow \infty}{\lim}\beta a_{n}^{2-\alpha}\le \underset{n\rightarrow \infty}{\lim}\left( a_n-a_{n+1} \right) =0
0≤n→∞limβan2−α≤n→∞lim(an−an+1)=0
(2)(2)(2)
由(1)(1)(1)知an−an+1an1−α≥βan\frac{a_n-a_{n+1}}{a_n^{1-\alpha}}\geq \beta a_nan1−αan−an+1≥βan⇒\Rightarrow⇒∫an+1an1x1−αdx≥βan\int_{a_{n+1}}^{a_{n}}\frac{1}{x^{1-\alpha}}dx\geq \beta a_{n}∫an+1anx1−α1dx≥βan(∀n∈Z+)(∗)(\forall n\in \mathbb{Z}^+)\qquad (*)(∀n∈Z+)(∗)
\qquad\qquad\qquad\qquad\quad ⇒\Rightarrow⇒∫an+1a11x1−αdx≥β∑k=1nan\int_{a_{n+1}}^{a_1}{\frac{1}{x^{1-\alpha}}}dx\ge \beta \displaystyle\sum_{k=1}^n{a_n}∫an+1a1x1−α1dx≥βk=1∑nan
令n→∞n\to\inftyn→∞,即知∑an<+∞\sum a_n < +\infty∑an<+∞
当α=1\alpha=1α=1时,an−an+1≥βan(n≥N)a_{n}-a_{n+1}\geq \beta a_{n}\qquad (n\geq N)an−an+1≥βan(n≥N)
故aN=∑n=N+∞(an−an+1)≥β∑n=N∞ana_{N}=\displaystyle\sum_{n=N}^{+\infty}(a_n-a_{n+1})\geq \beta\sum_{n=N}^{\infty}a_{n}aN=n=N∑+∞(an−an+1)≥βn=N∑∞an
即∑n=N∞an=O(aN)\displaystyle\sum_{n=N}^{\infty}a_{n}=O(a_{N})n=N∑∞an=O(aN)
当α≠1\alpha\ne1α̸=1时,注意(∗)(*)(∗)式,有
1αaNα=∫0aN1x1−αdx≥β∑n=N∞an\frac{1}{\alpha}a_{N}^{\alpha}=\int_{0}^{a_{N}}\frac{1}{x^{1-\alpha}}dx\geq \beta\sum_{n=N}^{\infty}a_{n}α1aNα=∫0aNx1−α1dx≥βn=N∑∞an即∑n=N∞an=O(aNα)\displaystyle\sum_{n=N}^{\infty}a_{n}=O(a^{\alpha}_{N})n=N∑∞an=O(aNα)