此题由网友“时间都知道”向我提问,为忽悠死他某年的考研题,原题如下
设f(x)f(x)f(x)在区间[0,1][0,1][0,1]上二阶连续可微,则∫01∣f′(x)∣dx≤9∫01∣f(x)∣dx+∫01∣f′′(x)∣dx\int_0^1|f'(x)|dx\leq9\int_0^1|f(x)|dx+\int_0^1|f''(x)|dx∫01∣f′(x)∣dx≤9∫01∣f(x)∣dx+∫01∣f′′(x)∣dx
\qquad原题倒不算难,考虑在[0,13][0,\frac{1}{3}][0,31]与[23,1][\frac{2}{3},1][32,1]中各取一点x1x_1x1,x2x_2x2,利用LagrangeLagrangeLagrange放缩,具体不予以赘述.
\qquad关于此题,9显然不是最优秀的,如何寻找最优秀的那个估计系数才是值得思考的.后来我拿这题请教专门研究pdepdepde方向的白老师,他说这是pdepdepde中内插不等式一个常用结论,看来pdepdepde确实是一门有趣的学科,有时间一定要好好学学.
\qquad下面是个人对最优系数探索的思考.
SolveSolveSolve:
\qquad首先待定x0x_0x0:∣f′(x)∣=∣f′(x0)+∫x0xf′′(t)dt∣≤∣f′(x0)∣+∫01∣f′′(x)∣dx|f'(x)|=|f'(x_0)+\int_{x_0}^xf''(t)dt|\leq|f'(x_0)|+\int_0^1|f''(x)|dx∣f′(x)∣=∣f′(x0)+∫x0xf′′(t)dt∣≤∣f′(x0)∣+∫01∣f′′(x)∣dx\qquad寻找α\alphaα:∣f′(x0)∣≤α∫01∣f(x)∣dx|f'(x_0)|\leq\alpha\int_0^1|f(x)|dx∣f′(x0)∣≤α∫01∣f(x)∣dx达到最优
\qquad为了使α\alphaα尽可能小,自然∣f′(x0)∣|f'(x_0)|∣f′(x0)∣越小越好
\qquad不妨设∣f′(x0)∣=min[0,1]∣f′(x)∣|f'(x_0)|=\underset{[0,1]}{min}|f'(x)|∣f′(x0)∣=[0,1]min∣f′(x)∣
\qquad再欲用LagrangeLagrangeLagrange引进f(x)f(x)f(x),待定x1x_1x1∣f(x)∣=∣f(x1)+f′(ξ)(x−x1)∣|f(x)|=|f(x_1)+f'(\xi)(x-x_1)|∣f(x)∣=∣f(x1)+f′(ξ)(x−x1)∣\qquad希望∣f(x1)+f′(ξ)(x−x1)∣=∣f(x1)∣+∣f′(ξ)(x−x1)∣|f(x_1)+f'(\xi)(x-x_1)|=|f(x_1)|+|f'(\xi)(x-x_1)|∣f(x1)+f′(ξ)(x−x1)∣=∣f(x1)∣+∣f′(ξ)(x−x1)∣
\qquad这样才有∣f(x)∣≥∣f′(ξ)∣∣x−x1∣≥∣f′(x0)∣∣x−x1∣|f(x)|\geq|f'(\xi)||x-x_1|\geq|f'(x_0)||x-x_1|∣f(x)∣≥∣f′(ξ)∣∣x−x1∣≥∣f′(x0)∣∣x−x1∣
\qquad只需取∣f(x1)∣=min[0,1]∣f(x)∣|f(x_1)|=\underset{[0,1]}{min}|f(x)|∣f(x1)∣=[0,1]min∣f(x)∣即可
\qquad此时∫01∣f(x)∣dx≥∣f′(x0)∣∫01∣x−x1∣dx=∣f′(x0)∣(x122+(1−x1)22)\int_0^1|f(x)|dx\geq|f'(x_0)|\int_0^1|x-x_1|dx=|f'(x_0)|(\frac{x_1^2}{2}+\frac{(1-x_1)^2}{2})∫01∣f(x)∣dx≥∣f′(x0)∣∫01∣x−x1∣dx=∣f′(x0)∣(2x12+2(1−x1)2)\qquad而x122+(1−x1)22≥14\frac{x_1^2}{2}+\frac{(1-x_1)^2}{2}\geq\frac{1}{4}2x12+2(1−x1)2≥41\qquad所以α=4\alpha=4α=4.又f(x)=x−1/2f(x)=x-1/2f(x)=x−1/2时有等号成立,故α=4\alpha=4α=4确实最优.
一道积分不等式的最优估计探索
最新推荐文章于 2024-10-28 17:02:23 发布
本文探讨了在特定条件下,如何寻找最优化的估计系数。通过解析数学问题,使用Lagrange放缩技巧,确定了在给定区间的最优系数为4,并验证了其最优性。
1730

被折叠的 条评论
为什么被折叠?



