1.设f(x)f(x)f(x)在[0,1][0,1][0,1]连续,(0,1)(0,1)(0,1)可导,且f(0)=0f(0)=0f(0)=0,f(1)=1f(1)=1f(1)=1.证明:在(0,1)(0,1)(0,1)内存在不同的λ\lambdaλ,μ\muμ使得f′(λ)(f′(μ)+1)=2f'(\lambda)(f'(\mu)+1)=2f′(λ)(f′(μ)+1)=2ProofProofProof
记F(x)=f(x)+2x−1F(x)=f(x)+2x-1F(x)=f(x)+2x−1,则F(0)=−1F(0)=-1F(0)=−1,F(1)=2F(1)=2F(1)=2.故存在ξ∈(0,1)\xi \in(0,1)ξ∈(0,1)使F(ξ)=0F(\xi)=0F(ξ)=0,即f(ξ)=1−2ξf(\xi)=1-2\xif(ξ)=1−2ξ令h(x)=f(x)+xh(x)=f(x)+xh(x)=f(x)+x.由LagrangeLagrangeLagrange中值定理得f(ξ)+ξξ=h(ξ)−h(0)ξ−0=h′(μ)=f′(μ)+1μ∈(0,ξ)\frac{f(\xi)+\xi}{\xi}=\frac{h(\xi)-h(0)}{\xi-0}=h'(\mu)=f'(\mu)+1\qquad\mu\in(0,\xi)ξf(ξ)+ξ=ξ−0h(ξ)−h(0)=h′(μ)=f′(μ)+1μ∈(0,ξ) f(ξ)+ξ−2ξ−1=h(ξ)−h(1)ξ−1=h′(λ)=f′(λ)+1λ∈(ξ,1)\frac{f(\xi)+\xi-2}{\xi-1}=\frac{h(\xi)-h(1)}{\xi-1}=h'(\lambda)=f'(\lambda)+1\qquad\lambda\in(\xi,1)ξ−1f(ξ)+ξ−2=ξ−1h(ξ)−h(1)=h′(λ)=f′(λ)+1λ∈(ξ,1)从而f′(λ)(f′(μ)+1)=f(ξ)−1ξ−1⋅f(ξ)+ξξ=−2ξξ−1⋅1−ξξ=2f'(\lambda)(f'(\mu)+1)=\frac{f(\xi)-1}{\xi-1}\cdot\frac{f(\xi)+\xi}{\xi}=\frac{-2\xi}{\xi-1}\cdot\frac{1-\xi}{\xi}=2f′(λ)(f′(μ)+1)=ξ−1f(ξ)−1⋅ξf(ξ)+ξ=ξ−1−2ξ⋅ξ1−ξ=2