POJ 1463 Strategic game (树形DP)

游戏守城挑战:最少士兵部署策略
本文探讨了一个有趣的游戏问题,即如何在中世纪城市的道路形成的树状网络上,用最少的士兵数来观察所有路径。通过动态规划算法,从叶子节点回溯至根节点,找到每个节点放置或不放置士兵的最小成本,最终得出最优解。

Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?
Your program should find the minimum number of soldiers that Bob has to put for a given tree.
For example for the tree:
the solution is one soldier ( at the node 1).
Input
The input contains several data sets in text format. Each data set represents a tree with the following description:
the number of nodes
the description of each node in the following format
node_identifier:(number_of_roads) node_identifier1 node_identifier2 … node_identifiernumber_of_roads
or
node_identifier:(0)
The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500);the number_of_roads in each line of input will no more than 10. Every edge appears only once in the input data.
Output
The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following:
Sample Input
4
0:(1) 1
1:(2) 2 3
2:(0)
3:(0)
5
3:(3) 1 4 2
1:(1) 0
2:(0)
0:(0)
4:(0)
Sample Output
1
2

dp表示第i个节点放不放士兵花的最小值。
从叶子节点回溯,最后到根节点,输出答案。
开始dp0初始化为0,表示不放士兵,dp1初始化为1,自然表示放士兵。
核心语句:

dp[root][0] += dp[g[root][i]][1];//父节点不放,子节点一定放
dp[root][1] += min(dp[g[root][i]][0], dp[g[root][i]][1]);//父节点放了,子节点可放可不放,选小的
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <map>
#include <string>
#include <vector>
//#include <iostream>
using namespace std;
//for(i=1;i<n;i++)
//scanf("%d",&n);
//printf("\n",);
int dp[1600][2];
vector<int>g[1600];
int father[1600];

int dfs(int root)
{
    for(int i=0; i<g[root].size(); i++)
    {
         dfs(g[root][i]);
    }

    for(int i=0; i<g[root].size(); i++)
    {
        dp[root][0] += dp[g[root][i]][1];
        dp[root][1] += min(dp[g[root][i]][0], dp[g[root][i]][1]);
    }

    return 0;
}


int main()
{
    int i,j,k,l,n,m;

    while(scanf("%d",&n)!=EOF)
    {

        for(i=0;i<=n;i++)
        {
            g[i].clear();
            dp[i][1]=1;dp[i][0]=0;
            father[i]=-1;
        }


        for(i=1;i<=n;i++)
        {
           scanf("%d:(%d)",&k,&l);

           for(j=0;j<l;j++)
           {
              scanf("%d",&m);
              g[k].push_back(m);
              father[m]=k;
           }
        }

        int root=1;

        while(father[root]!=-1)
        root=father[root];

        dfs(root);

        printf("%d\n",min(dp[root][0],dp[root][1]));

    }

    return 0;
}







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值