Perceptual Loss(感知损失)论文笔记

“Perceptual Losses for Real-Time Style Transfer and Super-Resolution”论文出自斯坦福大学李飞飞团队,发表于ECCV 2016

论文地址:https://arxiv.org/abs/1603.08155
补充材料地址:https://cs.stanford.edu/people/jcjohns/papers/eccv16/JohnsonECCV16Supplementary.pdf

简介

图像转换问题(image transformation tasks),输入一副图像转换成另一幅图像输出。现有方法来解决的图像转换问题,往往以监督训练的方式,训练一个前向传播的网络,利用的就是图像像素级之间的误差。这种方法在测试的时候非常有效,因为仅仅需要一次前向传播即可。但是,像素级的误差没有捕获输出和ground-truth图像之间的感知区别(perceptual differences)。

最近的研究工作表明,高质量的图像可以通过定义和优化perceptual loss函数来生成,该损失函数基于使用预训练好的网络提供的高层的特征。

本文中,我们将两者的优势进行结合,训练一个前向传播的网络进行图像转换的任务,但是不用 pixel-level loss function,而采用 perceptual loss function。在训练的过程中,感知误差衡量了图像之间的相似性,在测试的时可实时运行。

网络架构

网络架构的设计是本文的亮点,网络主要由两个部分构成:一个是 image transformation network 一个是 loss network 用来定义 loss fu

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值