name_scope

本文介绍了在TensorFlow中如何使用variable_scope进行变量管理,包括变量的定义、共享及名称空间的控制。通过示例展示了如何避免变量重复定义,并确保在不同作用域下正确地复用已定义的变量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1

with tf.name_scope('conv1') as scope:
    weights1 = tf.Variable([1.0, 2.0], name='weights')
    bias1 = tf.Variable([0.3], name='bias')

with tf.name_scope('conv2') as scope:
    weights2 = tf.Variable([4.0, 2.0], name='weights')
    bias2 = tf.Variable([0.33], name='bias')

print weights1.name
print weights2.name

2

# 这里是正确的打开方式~~~可以看出,name 参数才是对象的唯一标识
import tensorflow as tf
with tf.variable_scope('v_scope') as scope1:
    Weights1 = tf.get_variable('Weights', shape=[2,3])
    bias1 = tf.get_variable('bias', shape=[3])

# 下面来共享上面已经定义好的变量
# note: 在下面的 scope 中的变量必须已经定义过了,才能设置 reuse=True,否则会报错
with tf.variable_scope('v_scope', reuse=True) as scope2:
    Weights2 = tf.get_variable('Weights')

print Weights1.name
print Weights2.name
# 可以看到这两个引用名称指向的是同一个内存对象

3

import tensorflow as tf
# 注意, bias1 的定义方式
with tf.variable_scope('v_scope') as scope1:
    Weights1 = tf.get_variable('Weights', shape=[2,3])
#     bias1 = tf.Variable([0.52], name='bias')

# 下面来共享上面已经定义好的变量
# note: 在下面的 scope 中的get_variable()变量必须已经定义过了,才能设置 reuse=True,否则会报错
with tf.variable_scope('v_scope', reuse=True) as scope2:
    Weights2 = tf.get_variable('Weights')
    bias2 = tf.Variable([0.52], name='bias')

print Weights1.name
print Weights2.name
print bias2.name
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值