1.rand
生成均匀分布随机数【范围在 0 到 1 之间】
X = torch.rand(size=(3, 5)) # 三行五列均匀分布矩阵
print(X)
# tensor([[0.7748, 0.2472, 0.9830, 0.1304, 0.0813],
# [0.8575, 0.7833, 0.3998, 0.1507, 0.5604],
# [0.4845, 0.0819, 0.5311, 0.5740, 0.1260]])
2.randn
生成标准正态分布随机数【均值为 0 标准差为 1】
X = torch.randn(size=(3, 5)) # 三行五列标准正态分布矩阵
print(X)
# tensor([[0.7748, 0.2472, 0.9830, 0.1304, 0.0813],
# [0.8575, 0.7833, 0.3998, 0.1507, 0.5604],
# [0.4845, 0.0819, 0.5311, 0.5740, 0.1260]])
3.normal
生成任意正态分布随机数【均值和标准差由创建者指定】
X = torch.normal(mean=5, std=20, size=(3, 5)) # 均值5标准差20三行五列正态分布矩阵
print(X)
# tensor([[ 14.6288, 1.8920, -30.1699, 0.5885, -8.1273],
# [ 8.5448, 25.8816, -14.2568, -21.4472, 40.0083],
# [-24.3172, 4.9765, -17.0209, -4.4697, 17.1688]])