机器学习 大数据情境下blending-示例

blending

当数据量极大时,Blending 是更高效的选择,但我们可以通过 「分层Blending」+「分布式计算」 实现高性能融合。以下是针对大数据场景的优化方案,结合了 Blending 的速度优势和 Stacking 的数据利用率:

🚀 大数据场景下的混合融合方案

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from joblib import Parallel, delayed

# 生成大规模示例数据 (100万样本)
X, y = make_classification(n_samples=1_000_000, n_features=50, random_state=42)

# ====================== 分层Blending优化 ======================
# 策略:将数据分为三层,最大化利用数据
X_full, y_full = X, y

# 第一层:划分训练集和保留集 (98% : 2%)
X_train, X_holdout, y_train, y_holdout = train_test_split(
    X_full, y_full, test_size=0.02, random_state=42
)

# 第二层:将训练集分为Blending的A/B部分 (90% : 10%)
X_blend_A, X_blend_B, y_blend_A, y_blend_B = train_test_split(
    X_train, y_train, test_size=0.1, random_state=42
)

# ====================== 分布式训练基模型 ======================
# 定义高效且多样化的基模型(适合大数据)
base_models = [
    ('lgbm', LGBMClassifier(
        n_estimators=500,
        learning_rate=0.05,
        num_leaves=127,
        subsample=0.8,
        colsample_bytree=0.8,
        n_jobs=4  # 单模型并行
    )),
    ('xgb', XGBClassifier(
        n_estimators=500,
        learning_rate=0.05,
        max_depth=6,
        subsample=0.8,
        colsample_bytree=0.8,
        tree_method='hist',  # 大数据优化
        n_jobs=4
    )),
    ('hist_gbm', HistGradientBoostingClassifier(
        max_iter=500,
        learning_rate=0.05,
        max_bins=255,
        categorical_features=None
    )),
    ('lr', LogisticRegression(
        C=0.1,
        solver='lbfgs',
        max_iter=1000,
        n_jobs=4
    ))
### Blending-Pooling-Separation Problem in Operations Research The blending-pooling-separation (BPS) problem is a significant challenge within the field of operations research, particularly concerning process industries such as oil refining, chemical processing, and food manufacturing. This type of problem involves three main components: #### Blending Process In this phase, raw materials or inputs are mixed to create intermediate products that meet specific quality requirements. The goal here includes optimizing proportions while adhering strictly to constraints on properties like sulfur content, octane rating, etc., ensuring final mixtures satisfy predefined standards. #### Pooling Operation This stage deals with combining multiple streams into one common pool before further separation processes occur. It aims at minimizing costs associated with handling different grades by strategically managing how much from each source goes into shared storage tanks without violating any operational limits imposed upon them[^1]. #### Separation Task Finally, during separation tasks, previously pooled material gets divided back out according to desired specifications for end-user consumption or sale purposes. Efficient algorithms play an essential role here because they help determine optimal ways to allocate resources across various outputs efficiently. For solving BPS problems effectively using modern heuristic methods mentioned earlier—such as DBO, HHO, GWO, BKA—it's crucial first to model these complex systems accurately through mathematical formulations capturing all relevant aspects involved thoroughly enough so potential solutions can be explored systematically via computational means provided by those advanced search strategies outlined above. ```python def solve_bps_problem(model_parameters): """ Solves a given Blending-Pooling-Separation problem based on specified parameters. Args: model_parameters (dict): Dictionary containing necessary data points required for setting up and running simulation Returns: solution_results (tuple): Tuple holding key performance indicators resulting from successful execution of algorithmic approach chosen """ pass # Placeholder function body; actual implementation depends heavily on specifics not covered here ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万物琴弦光锥之外

给个0.1,恭喜老板发财

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值