环境配置
镜像选择:
PyTorch 1.9.0
Python 3.8(ubuntu18.04)
Cuda 11.1
source activate
create -n yolo python=3.8
conda activate yolo
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
代码下载
git config --global url.https://github.com/.insteadOf git://github.com/
git clone git://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt
数据集
上传数据集zip
- 生成文件
import os
import random
trainval_percent = 0.9 # 训练和验证集所占比例,剩下的0.1就是测试集的比例
train_percent = 0.8 # 训练集所占比例,可自己进行调整
xmlfilepath = '../yolov5/helmet/Annotations'
txtsavepath = '../yolov5/helmet/ImageSets/Main'
total_xml = os.listdir(xmlfilepath)
# print(total_xml)
num = len(total_xml)
list = range(num)
# print(list)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftrainval = open('../yolov5/helmet/ImageSets/Main/trainval.txt', 'w')
ftest = open('../yolov5/helmet/ImageSets/Main/test.txt', 'w')
ftrain = open('../yolov5/helmet/ImageSets/Main/train.txt', 'w')
fval = open('../yolov5/helmet/ImageSets/Main/val.txt', 'w')
for i in list:
name = total_xml[i][:-4] + '\n'
# print(name)
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
- xml_txt格式转换
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
#sets设置的就是
sets=['train', 'val', 'test']
# classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
classes = ["hat", "person"] # 修改为自己的label
def convert(size, box):
dw = 1./(size[0]) # 有的人运行这个脚本可能报错,说不能除以0什么的,你可以变成dw = 1./((size[0])+0.1)
dh = 1./(size[1]) # 有的人运行这个脚本可能报错,说不能除以0什么的,你可以变成dh = 1./((size[0])+0.1)
x = (box[0] + box[1])/2.0 - 1
y = (box[2] + box[3])/2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
def convert_annotation(image_id):
in_file = open('../yolov5/helmet/Annotations/%s.xml'%(image_id))
out_file = open('../yolov5/helmet/labels/%s.txt'%(image_id), 'w')
tree=ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult)==1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for image_set in sets:
if not os.path.exists('../yolov5/helmet/labels/'): # 修改路径(最好使用全路径)
os.makedirs('../yolov5/helmet/labels/') # 修改路径(最好使用全路径)
image_ids = open('../yolov5/helmet/ImageSets/Main/%s.txt' % (image_set)).read().strip().split() # 修改路径(最好使用全路径)
list_file = open('../yolov5/helmet/%s.txt' % (image_set), 'w') # 修改路径(最好使用全路径)
for image_id in image_ids:
list_file.write('../yolov5/helmet/JPEGImages/%s.jpg\n' % (image_id)) # 修改路径(最好使用全路径)
convert_annotation(image_id)
list_file.close()
- 新建yaml文件
train: ../yolov5/helmet/train.txt #此处是xml_2_txt.py生成的train.txt的路径,不要弄成Main文件夹下的.txt
val: ../yolov5/helmet/val.txt #此处是xml_2_txt.py生成的train.txt的路径,不要弄成Main文件夹下的.txt
test: ../yolov5/helmet/test.txt #此处是xml_2_txt.py生成的train.txt的路径,不要弄成Main文件夹下的.txt
# Classes
nc: 2 # number of classes 数据集类别数量
names: ['hat', 'person'] # class names 数据集类别名称,注意和标签的顺序对应
- 因为初始的放图片的文件夹是JPEGImages,而yolov5默认的图片和标签对应的文件夹叫做images,所以要改动dataloader.py中的代码
def img2label_paths(img_paths):
# Define label paths as a function of image paths
sa, sb = f'{os.sep}JPEGImages{os.sep}', f'{os.sep}labels{os.sep}' # /images/, /labels/ substrings
return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
- 修改yolov5s.yaml
在这里插入代码片