Python——DataFrame中,中文列的筛选

本文详细介绍如何使用Python Pandas库进行中文数据筛选,包括精确匹配、模糊匹配、多条件筛选及结合其他数据集筛选等高级技巧,帮助读者快速定位并提取所需数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

中文筛选的方法:

筛选出A列重庆的行:

data.A==‘重庆’ / data[‘A’]==‘重庆’

筛选出A列包含重庆的行业(答案中有:重庆/北京和重庆):
data.A.str
筛选出A列分别是重庆和成都的行业:
data.A.isin([‘重庆’,’成都’])
筛选出在dataframe2的A列中包含dataframe1的B列的所有选项:

data2.A.isin(data1.index.tolist())

例如:原数据(data_clean):(数据总共超过10w条)
在这里插入图片描述
整理出以好评率排序的表格:

data_director = data_clean.groupby(‘导演’).sum()[[‘好评数’,‘评分人数’]]
data_director[‘好评率’]=data_director[‘好评数’]/data_director[‘评分人数’]
data_director_new = data_director.sort_values(by=‘好评率’,ascending=False)

结合data_clean,查看包含导演王静的作品有哪些?

data_director_wangjing = data_clean[data_clean.导演.str.contains(‘王静’)]
data_director_wangjing = data_clean[data_clean.导演.str.contains(‘王静’)].drop_duplicates([‘整理后剧名’])

结合data_clean,查看只有王静作为导演的作品有哪些?

data_director_onlywangjing = data_clean[data_clean.导演==‘王静’]
data_director_onlywangjing = data_clean[data_clean.导演==‘王静’].drop_duplicates([‘整理后剧名’])

结合data_clean,查看好评率前20的导演的作品有哪些?

data_directorTOP20 = data_clean[data_clean.导演.isin(data_director_new[:20].index.tolist())]
data_directorTOP20 = data_clean[data_clean.导演.isin(data_director_new[:20].index.tolist())].drop_duplicates([‘整理后剧名’])


原文:https://blog.youkuaiyun.com/weixin_43291997/article/details/83098660
感谢原作者

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值