A reversible prime in any number system is a prime whose “reverse” in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (< 105) and D (1 < D <= 10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line “Yes” if N is a reversible prime with radix D, or “No” if not.
Sample Input:
73 10
23 2
23 10
-2
Sample Output:
Yes
Yes
No
先判断该十进制数N是否为素数,再将其转为r进制,逆序之后化为十进制,在判断这个数是否为素数
源码:
#include<bits/stdc++.h>
using namespace std;
stack<int> s;
bool is_prime(int a) {
if (a == 1 || a == 0)return false;
for (int i = 2; i <= sqrt(a); i++) {
if (a % i == 0)return false;
}
return true;
}
int rev(int n, int r) {
while (n != 0) {
s.push(n % r);
n /= r;
}
int sum = 0, cnt = 0;
while (!s.empty()) {
sum += pow(r, cnt++) * s.top();
s.pop();
}
return sum;
}
int main() {
string t;
int n, m, r;
while (1) {
cin >> t;
n = atoi(t.c_str());
if (n < 0)break;
cin >> r;
//将十进制n转化为r进制,颠倒,再转为十进制
m = rev(n, r);
if (is_prime(n) && is_prime(m))
cout << "Yes" << endl;
else
cout << "No" << endl;
}
}