1015 Reversible Primes (20 分)
A reversible prime in any number system is a prime whose “reverse” in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (<10
5
) and D (1<D≤10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line Yes if N is a reversible prime with radix D, or No if not.
Sample Input:
73 10
23 2
23 10
-2
Sample Output:
Yes
Yes
No
#include <iostream>
#include <cmath>
using namespace std;
int ConvertAndReverse(int Number,int Radix)
{
int Remainder,Convert = 0;
while (Number) {
Remainder = Number % Radix;
Number /= Radix;
Convert = Convert * Radix + Remainder;
}
return Convert;
}
bool IsPrime(int N)
{
// if (N == 2 || N ==3 ) return true;
if (N == 1) return false;
int i;
for (i = sqrt(N); i >= 2; --i) {
if (N % i == 0)
return false;
}
return true;
}
int main(void)
{
// freopen("input.txt", "r", stdin);
int Number, Radix;
while (true) {
cin >> Number;
if (Number < 0) break;
cin >> Radix;
if (IsPrime(Number) && IsPrime(ConvertAndReverse(Number, Radix)))
cout << "Yes" << endl;
else cout << "No" << endl;
}
// fclose(stdin);
system("pause");
return 0;
}