#include <iostream>
#include <iomanip>
#include <vector>
#include <math.h>
using namespace std;
typedef vector<vector<double>> Matrix;
void dispMatrix(Matrix m); //输出矩阵值
void dispRes(vector<double> r); //输出解向量
void normlize(Matrix &m, int i); //行列式第i行归一
Matrix eye(int n); //返回一个n阶单位矩阵
vector<double> solve(Matrix a, Matrix L, Matrix U);
Matrix LU(Matrix &m, Matrix &U); //分解n*n
vector<double> LUsolve(Matrix a); //对n*n的矩阵分解并求出解
Matrix LU1(Matrix &m, Matrix &U); //分解n*m
Matrix colesky(Matrix a); //a是正定对称矩阵 n*n
vector<double> coleskySolve(Matrix a); //对与平方根法分解结果进行求解
Matrix OSR(Matrix a, Matrix &T); //optimized square root改进平方根
vector<double> OSR_solve(Matrix a);
Matrix transpos(Matrix m); //求矩阵的转置
Matrix multi(Matrix a, Matrix b);
Matrix Inv(Matrix a); //对矩阵求逆
//TODO:改进平方根 求逆
int main()
{
ios::sync_with_stdio("false");
int n;
cin >> n;
Matrix M1(n, vector<double>(n, 0));
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) //这里需要注意是输入n*n 还是n*n+1 根据需要改写
cin >> M1[i][j];
// dispMatrix(M1);
Matrix m = Inv(M1);
// dispMatrix(d);
/*
case1:n*n
dispRes(LUsolve(M1));
case2:n*m
Matrix U(n, vector<double>(n + 1, 0));
Matrix L = LU1(M1, U, n);
*/
system("pause");
return 0;
}
Matrix OSR(Matrix a, Matrix &T)
{
int n = (int)a.size();
Matrix L = eye(n);
T[0][0] = a[0][0];
for (int i = 1; i < n; i++)
{
for (int j = 0; j < i; j++)
{
T[i][j] = a[i][j];
for (int k = 0; k <= j - 1; k++)
T[i][j] -= T[i][k] * L[j][k];
L[i][j] = T[i][j] / T[j][j];
}
T[i][i] = a[i][i];
for (int k = 0; k <= i - 1
矩阵三角分解(LU+高斯+平方根+求解方法+求逆)
最新推荐文章于 2025-03-13 11:16:27 发布