记录Java实现图的深度优先遍历与广度优先遍历练习

package upload;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;

public class DfsandBfs {
	private ArrayList<String> vertex;// 顶点
	private int[][] edges;// 边,实际上是邻接矩阵
	private int number_of_edge;// 边的数目
	private boolean[] isVisited;

	// 构造器
	public DfsandBfs(int n) {
		vertex = new ArrayList<String>(n);
		edges = new int[n][n];
		isVisited = new boolean[n];
		number_of_edge = 0;
	}

	// 添加点的方法
	public void addvertex(String point) {
		vertex.add(point);// 后面可以通过增强for循环添加
	}

	// 添加边的方法
	public void addedge(int w1, int w2, int weight) {
		edges[w1][w2] = weight;
		edges[w2][w1] = weight;
		number_of_edge++;
	}

	// 返回下标所对应字符
	public String showsign(int index) {
		return vertex.get(index);
	}

	// 返回顶点数目
	public int shownumber_vertex() {
		return vertex.size();
	}

	// 返回边的数目
	public int shownumber_edge() {
		return number_of_edge;
	}

	// 返回边的权值
	public int showweight(int w1, int w2) {
		return edges[w1][w2];
	}

	// 返回图的邻接矩阵
	public void showgraph() {
		for (int[] arr : edges) {
			System.out.println(Arrays.toString(arr));
		}
	}

	// 寻找邻接点的下标,给定这个元素的下标index情况下
	public int seekadjacentpoint(int index) {
		for (int i = 0; i < shownumber_vertex(); i++) {
			if (edges[index][i] != 0) {
				return i;
			}
		}
		return -1;
	}

	// 当要寻找邻接点的下一个邻接点下标,这里是为深度遍历和广度遍历做铺垫
	public int seeknextadjacentpoint(int index, int next) {
		for (int j = next + 1; j < shownumber_vertex(); j++) {
			if (edges[index][j] != 0) {
				return j;
			}
		}
		return -1;
	}

	// 开始深度遍历一个结点
	public void dfs(boolean[] isVisited, int index) {
		System.out.print(showsign(index) + "->");// 访问当前结点
		isVisited[index] = true;
		int adjacentpoint = seekadjacentpoint(index);
		while (adjacentpoint != -1) {
			if (!isVisited[adjacentpoint]) {
				dfs(isVisited, adjacentpoint);//直接以这个点为基础继续深度遍历
			}
			adjacentpoint = seeknextadjacentpoint(index, adjacentpoint);
		}
	}

	// 深度遍历所有结点
	public void dfs() {
		for (int i = 0; i < shownumber_vertex(); i++) {
			if (!isVisited[i]) {
				dfs(isVisited, i);
			}
		}
		System.out.println();
	}

	// 重置一下布尔数值
	public void resetbool() {
		for (int i = 0; i < isVisited.length; i++) {
			isVisited[i] = false;
		}
	}

	// 广度遍历一个结点
	public void bfs(boolean[] isVisited, int index) {
		LinkedList queue = new LinkedList();// 用一个队列存放遍历时的结点
		System.out.print(showsign(index) + "->");
		isVisited[index] = true;
		queue.add(index);
		while (!queue.isEmpty()) {
			int point = (Integer) queue.removeFirst();
			int adjacentpoint = seekadjacentpoint(point);
			while (adjacentpoint != -1) {
				if (!isVisited[adjacentpoint]) {
					System.out.print(showsign(adjacentpoint) + "->");
					isVisited[adjacentpoint] = true;
					queue.add(adjacentpoint);
				} else {
					adjacentpoint = seeknextadjacentpoint(index, adjacentpoint);
				}
			}
		}
	}

	// 广度遍历所有结点
	public void bfs() {
		for (int i = 0; i < shownumber_vertex(); i++) {
			if (!isVisited[i]) {
				bfs(isVisited, i);
			}
		}
	}

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		DfsandBfs db = new DfsandBfs(5);
		String[] str = { "A", "B", "C", "D", "E"};
		for (String s : str) {
			db.addvertex(s);
		}
		//图的连接方式为:A-B A-C A-E B-D C-E
		db.addedge(0, 1, 1);
		db.addedge(0, 2, 1);
		db.addedge(0, 4, 1);
		db.addedge(1, 3, 1);
		db.addedge(2, 4, 1);
		db.showgraph();
		System.out.println("深度遍历的结果是:");
		db.dfs();
		db.resetbool();
		System.out.println("广度遍历的结果是:");
		db.bfs();
	}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值