基本
∫xadx=11+ax1+a+C(a≠−1) \int x^adx = \frac{1}{1+a}x^{1+a}+C(a\neq-1) ∫xadx=1+a1x1+a+C(a=−1)
∫1xdx=In∣x∣+C \int\frac{1}{x}dx = In|x|+C ∫x1dx=In∣x∣+C
∫1x2dx=−1x+C \int\frac{1}{x^2}dx = - \frac{1}{x}+C ∫x21dx=−x1+C
∫1xdx=2x+C \int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C ∫x1dx=2x+C
∫axdx=1Inaax+C \int a^x dx = \frac{1}{Ina}a^x+C ∫axdx=Ina1ax+C
∫exdx=ex+C \int e^xdx = e^x+C ∫exdx=ex+C
三角函数
正弦
∫sinxdx=−cosx+C \int sinxdx = -cosx+C ∫sinxdx=−cosx+C
∫secxdx=ln∣secx+tanx∣+C \int secx dx = ln|secx+tanx|+C ∫secxdx=ln∣secx+tanx∣+C
∫sec2xdx=tanx+C \int sec^2x dx = tanx+C ∫sec2xdx=tanx+C
∫tanxdx=−ln∣cosx∣+C \int tanx dx = -ln|cosx|+C ∫tanxdx=−ln∣cosx∣+C
∫secxtanxdx=secx+C \int secxtanx dx = secx+C ∫secxtanxdx=secx+C
余弦
∫cosxdx=sinx+C \int cosx dx = sinx+C ∫cosxdx=sinx+C
∫cscxdx=ln∣cscx−cotx∣+C \int cscx dx = ln|cscx-cotx|+C ∫cscxdx=ln∣cscx−cotx∣+C
∫csc2xdx=−cotx+C \int csc^2x dx = -cotx+C ∫csc2xdx=−cotx+C
∫cotxdx=ln∣sinx∣+C \int cotx dx = ln|sinx|+C ∫cotxdx=ln∣sinx∣+C
∫cscxcotxdx=−cscx+C \int cscxcotx dx = -cscx+C ∫cscxcotxdx=−cscx+C
反三角函数与分式积分
∫1a2+x2dx=1aarctanxa+C \int \frac{1}{a^2+x^2}dx = \frac{1}{a}arctan\frac{x}{a}+C ∫a2+x21dx=a1arctanax+C
∫1a2−x2dx=12aIn∣a+xa−x∣+C \int \frac{1}{a^2-x^2}dx = \frac{1}{2a}In|\frac{a+x}{a-x}|+C ∫a2−x21dx=2a1In∣a−xa+x∣+C
∫1x2−a2dx=12aIn∣x−ax+a∣+C \int \frac{1}{x^2-a^2}dx = \frac{1}{2a}In|\frac{x-a}{x+a}|+C ∫x2−a21dx=2a1In∣x+ax−a∣+C
∫1x2±a2dx=In∣x+x2±a2∣+C \int \frac{1}{\sqrt{x^2 \pm a^2}}dx = In|x+\sqrt{x^2 \pm a^2}|+C ∫x2±a21dx=In∣x+x2±a2∣+C
∫1a2−x2dx=arcsinxa+C \int \frac{1}{\sqrt{a^2 - x^2}}dx = arcsin\frac{x}{a}+C ∫a2−x21dx=arcsinax+C
根号积分
∫x2+a2dx=x2x2+a2+a22ln(x+x2+a2)+C \int \sqrt{x^2 + a^2}dx = \frac{x}{2}\sqrt{x^2 + a^2} + \frac{a^2}{2}ln(x+\sqrt{x^2 + a^2})+C ∫x2+a2dx=2xx2+a2+2a2ln(x+x2+a2)+C
∫x2−a2dx=x2x2−a2−a22ln∣x+x2−a2∣+C \int \sqrt{x^2 - a^2}dx = \frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2}ln|x+\sqrt{x^2 - a^2}|+C ∫x2−a2dx=2xx2−a2−2a2ln∣x+x2−a2∣+C
∫a2−x2dx=x2a2−x2+a22arcsinxa+C \int \sqrt{a^2 - x^2}dx = \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}arcsin\frac{x}{a}+C ∫a2−x2dx=2xa2−x2+2a2arcsinax+C
其他扩展
消幂
类似于∫xmeλxdx\int x^m e^{\lambda x}dx∫xmeλxdx、∫xmlnnxdx\int x^m ln^nxdx∫xmlnnxdx、∫xmsinax/cosaxdx\int x^m sinax/cosaxdx∫xmsinax/cosaxdx,可用表格法计算,具体为:
对角相连,正负相间,上导下积,导到0停。
三角代换
a2−x2→x=asint\sqrt{a^2 - x^2} \to x=asinta2−x2→x=asint、a2+x2→x=atant\sqrt{a^2 + x^2} \to x=atanta2+x2→x=atant、x2−a2→x=asect\sqrt{x^2 - a^2} \to x=asectx2−a2→x=asect
sin2x=1−cos2x2
sin^2x = \frac{1-cos2x}{2}
sin2x=21−cos2x
cos2x=1+cos2x2 cos^2x = \frac{1+cos2x}{2} cos2x=21+cos2x
sin2x=2sinxcosx sin2x = 2sinxcosx sin2x=2sinxcosx
cos2x=cos2x−sin2x=2cos2x−1=1−2sin2x cos2x = cos^2x - sin^2x = 2cos^2x - 1 = 1 - 2sin^2x cos2x=cos2x−sin2x=2cos2x−1=1−2sin2x
万能替换公式:令u=tanx2u = tan\frac{x}{2}u=tan2x,x=2arctanux = 2arctanux=2arctanu,dx=21+u2dudx = \frac{2}{1+u^2}dudx=1+u22du
sinx=2tanx21+tan2x2=2u1+u2
sinx = \frac{2tan\frac{x}{2}}{1 + tan^2\frac{x}{2}} = \frac{2u}{1+u^2}
sinx=1+tan22x2tan2x=1+u22u
cosx=1−tan2x21+tan2x2=1−u21+u2 cosx = \frac{1 - tan^2\frac{x}{2}}{1 + tan^2\frac{x}{2}} = \frac{1-u^2}{1+u^2} cosx=1+tan22x1−tan22x=1+u21−u2
tanx=sinxcosxtanx = \frac{sinx}{cosx}tanx=cosxsinx、secx=1cosxsecx = \frac{1}{cosx}secx=cosx1、cotx=1tanxcotx = \frac{1}{tanx}cotx=tanx1、cscx=1sinxcscx = \frac{1}{sinx}cscx=sinx1
特殊公式
∫eaxsinbx/cosbxdx=1a2+b2⋅∣(eax)′(sinbx)′eaxsinbx∣+C=1a2+b2⋅(aeaxsinbx−beaxcosbx)+C \int e^{ax}sinbx/cosbxdx = \frac{1}{a^2+b^2} \cdot \begin{vmatrix} (e^{ax})^\prime & (sinbx)^\prime\\ e^{ax} & sinbx \end{vmatrix} + C = \frac{1}{a^2+b^2} \cdot (ae^{ax}sinbx - be^{ax}cosbx) + C ∫eaxsinbx/cosbxdx=a2+b21⋅(eax)′eax(sinbx)′sinbx+C=a2+b21⋅(aeaxsinbx−beaxcosbx)+C
∫1a2sin2x+b2cos2xdx=∫1cos2x(a2tan2x+b2)dx=1a∫1(atanx)2+b2datanx=1abarctanatanxb+C \int \frac{1}{a^2sin^2x + b^2cos^2x}dx = \int \frac{1}{cos^2x(a^2tan^2x + b^2)}dx = \frac{1}{a}\int \frac{1}{(atanx)^2 + b^2}datanx = \frac{1}{ab}arctan\frac{atanx}{b}+ C ∫a2sin2x+b2cos2x1dx=∫cos2x(a2tan2x+b2)1dx=a1∫(atanx)2+b21datanx=ab1arctanbatanx+C
有理函数拆分
1(x+1)(x+2)(x+3)→A(x+1)+B(x+2)+C(x+3) \frac{1}{(x + 1)(x + 2)(x + 3)} \to \frac{A}{(x + 1)} + \frac{B}{(x + 2)} + \frac{C}{(x + 3)} (x+1)(x+2)(x+3)1→(x+1)A+(x+2)B+(x+3)C
1(x+1)2(x−1)→A(x+1)+B(x+1)2+C(x−1) \frac{1}{(x + 1)^2(x - 1)} \to \frac{A}{(x + 1)} + \frac{B}{(x + 1)^2} + \frac{C}{(x - 1)} (x+1)2(x−1)1→(x+1)A+(x+1)2B+(x−1)C
1(x−1)(x2+1)→A(x−1)+Bx+C(x2+1) \frac{1}{(x - 1)(x^2 + 1)} \to \frac{A}{(x - 1)} + \frac{Bx + C}{(x^2 + 1)} (x−1)(x2+1)1→(x−1)A+(x2+1)Bx+C