一阶线性常微分方程
标准形式 : y′+p(x)y=q(x)y'+p(x)y=q(x)y′+p(x)y=q(x)
求解方法:
0. 将微分方程化为标准形式
1. 寻找一个积分因子u(x)u(x)u(x), 等号两侧同时乘u(x)u(x)u(x)
u(x)y′+u(x)p(x)y=u(x)q(x)u(x)y'+u(x)p(x)y=u(x)q(x)u(x)y′+u(x)p(x)y=u(x)q(x)
u(x)y′+u(x)p(x)y=(u(x)y)′u(x)y'+u(x)p(x)y = (u(x)y)'u(x)y′+u(x)p(x)y=(u(x)y)′
u(x)′y=u(x)p(x)yu(x)'y = u(x)p(x)yu(x)′y=u(x)p(x)y
u(x)′=u(x)p(x)u(x)' = u(x)p(x)u(x)′=u(x)p(x)
du(x)dx=u(x)p(x)\frac {du(x)}{dx} =u(x)p(x)dxdu(x)=u(x)p(x)
du(x)u(x)=p(x)dx\frac {du(x)}{u(x)}=p(x)dxu(x)du(x)=p(x)dx
lnu(x)=∫p(x)dxlnu(x)=\int_{}{}p(x)dxlnu(x)=∫p(x)dx
u(x)=e∫p(x)dxu(x) = e^{\int_{}{}p(x)dx}u(x)=e∫p(x)dx
只需要取众多u(x)u(x)u(x)中的一个就可以
- 方程变为:
u(x)y′+u(x)p(x)y=u(x)q(x)u(x)y'+u(x)p(x)y=u(x)q(x)u(x)y′+u(x)p(x)y=u(x)q(x)
(u(x)y)′=u(x)q(x)(u(x)y)'=u(x)q(x)(u(x)y)′=u(x)q(x)
- 两侧同时积分:
u(x)y=∫u(x)q(x)dxu(x)y=\int_{}{}u(x)q(x)dxu(x)y=∫u(x)q(x)dx
y=∫u(x)q(x)dxu(x)y=\frac {\int_{}{}u(x)q(x)dx}{u(x)}y=u(x)∫u(x)q(x)dx
first example:
xy′−y=x3xy' -y = x^3xy′−y=x3
y′−1xy=x2y'-\frac {1}{x}y=x^2y′−x1y=x2
u(x)=e∫−1xdx=−1xu(x) = e^{\int_{}{}-\frac {1}{x}dx}=-\frac {1}{x}u(x)=e∫−x1dx=−x1
−1xy=∫−1xx2dx=∫−xdx=−x22+C-\frac {1}{x}y =\int_{}{}-\frac {1}{x}x^2dx=\int_{}{}-xdx=-\frac {x^2}{2}+C−x1y=∫−x1x2dx=∫−xdx=−2x2+C
y=x32+Cxy =\frac {x^3}{2}+Cxy=2x3+Cx
second example
(1+cosx)y′−(sinx)y=2x(1+cosx)y'-(sinx)y=2x(1+cosx)y′−(sinx)y=2x
y′−sinx1+cosxy=2x1+cosxy'-\frac {sinx}{1+cosx}y=\frac {2x}{1+cosx}y′−1+cosxsinxy=1+cosx2x
u(x)=e∫−sinx1+cosxdx=eln(1+cosx)=1+cosxu(x) =e^{\int_{}{} -\frac {sinx}{1+cosx}dx}=e^{ln(1+cosx)}=1+cosxu(x)=e∫−1+cosxsinxdx=eln(1+cosx)=1+cosx
y=∫(1+cosx)2x1+cosxdx1+cosx=x2+C1+cosxy=\frac {\int_{}{}(1+cosx)\frac {2x}{1+cosx}dx}{1+cosx}=\frac {x^2+C}{1+cosx}y=1+cosx∫(1+cosx)1+cosx2xdx=1+cosxx2+C
给定初值y(0)=1y(0)=1y(0)=1
02+C1+cos0=1→C=2\frac {0^2+C}{1+cos0}=1\to C=21+cos002+C=1→C=2
y=x2+21+cosxy=\frac {x^2+2}{1+cosx}y=1+cosxx2+2
application
传递−-−传导modal
dTdt=k(Te(t)−T(t))(k>0)\frac {dT}{dt}=k(T_e(t)-T(t)) (k>0)dtdT=k(Te(t)−T(t))(k>0)
dTdt+kT(t)=kTe(t)\frac {dT}{dt}+kT(t)=kT_e(t)dtdT+kT(t)=kTe(t)
u(t)=e∫kdt=ektu(t) = e^{\int_{}{}kdt}=e^{kt}u(t)=e∫kdt=ekt
T(t)=∫u(t)kTe(t)dtu(t)=∫ektkTe(t)dtektT(t)=\frac {\int_{}{}u(t)kT_e(t)dt}{u(t)}=\frac {\int_{}{}e^{kt}kT_e(t)dt}{e^{kt}}T(t)=u(t)∫u(t)kTe(t)dt=ekt∫ektkTe(t)dt
给定初值T(0)=T0T(0)=T_0T(0)=T0