一阶线性常微分方程(lesson 3)

本文深入探讨了一阶线性常微分方程的求解方法,包括如何将其转换为标准形式,利用积分因子简化方程,以及通过具体实例展示解题过程。此外,还介绍了此类方程在热传导模型中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一阶线性常微分方程

标准形式 : y′+p(x)y=q(x)y'+p(x)y=q(x)y+p(x)y=q(x)

求解方法:

0. 将微分方程化为标准形式
1. 寻找一个积分因子u(x)u(x)u(x), 等号两侧同时乘u(x)u(x)u(x)

u(x)y′+u(x)p(x)y=u(x)q(x)u(x)y'+u(x)p(x)y=u(x)q(x)u(x)y+u(x)p(x)y=u(x)q(x)

u(x)y′+u(x)p(x)y=(u(x)y)′u(x)y'+u(x)p(x)y = (u(x)y)'u(x)y+u(x)p(x)y=(u(x)y)

u(x)′y=u(x)p(x)yu(x)'y = u(x)p(x)yu(x)y=u(x)p(x)y

u(x)′=u(x)p(x)u(x)' = u(x)p(x)u(x)=u(x)p(x)

du(x)dx=u(x)p(x)\frac {du(x)}{dx} =u(x)p(x)dxdu(x)=u(x)p(x)

du(x)u(x)=p(x)dx\frac {du(x)}{u(x)}=p(x)dxu(x)du(x)=p(x)dx

lnu(x)=∫p(x)dxlnu(x)=\int_{}{}p(x)dxlnu(x)=p(x)dx

u(x)=e∫p(x)dxu(x) = e^{\int_{}{}p(x)dx}u(x)=ep(x)dx

只需要取众多u(x)u(x)u(x)中的一个就可以

  1. 方程变为:

u(x)y′+u(x)p(x)y=u(x)q(x)u(x)y'+u(x)p(x)y=u(x)q(x)u(x)y+u(x)p(x)y=u(x)q(x)

(u(x)y)′=u(x)q(x)(u(x)y)'=u(x)q(x)(u(x)y)=u(x)q(x)

  1. 两侧同时积分:

u(x)y=∫u(x)q(x)dxu(x)y=\int_{}{}u(x)q(x)dxu(x)y=u(x)q(x)dx

y=∫u(x)q(x)dxu(x)y=\frac {\int_{}{}u(x)q(x)dx}{u(x)}y=u(x)u(x)q(x)dx

first example:

xy′−y=x3xy' -y = x^3xyy=x3

y′−1xy=x2y'-\frac {1}{x}y=x^2yx1y=x2

u(x)=e∫−1xdx=−1xu(x) = e^{\int_{}{}-\frac {1}{x}dx}=-\frac {1}{x}u(x)=ex1dx=x1

−1xy=∫−1xx2dx=∫−xdx=−x22+C-\frac {1}{x}y =\int_{}{}-\frac {1}{x}x^2dx=\int_{}{}-xdx=-\frac {x^2}{2}+Cx1y=x1x2dx=xdx=2x2+C

y=x32+Cxy =\frac {x^3}{2}+Cxy=2x3+Cx

second example

(1+cosx)y′−(sinx)y=2x(1+cosx)y'-(sinx)y=2x(1+cosx)y(sinx)y=2x

y′−sinx1+cosxy=2x1+cosxy'-\frac {sinx}{1+cosx}y=\frac {2x}{1+cosx}y1+cosxsinxy=1+cosx2x

u(x)=e∫−sinx1+cosxdx=eln(1+cosx)=1+cosxu(x) =e^{\int_{}{} -\frac {sinx}{1+cosx}dx}=e^{ln(1+cosx)}=1+cosxu(x)=e1+cosxsinxdx=eln(1+cosx)=1+cosx

y=∫(1+cosx)2x1+cosxdx1+cosx=x2+C1+cosxy=\frac {\int_{}{}(1+cosx)\frac {2x}{1+cosx}dx}{1+cosx}=\frac {x^2+C}{1+cosx}y=1+cosx(1+cosx)1+cosx2xdx=1+cosxx2+C

给定初值y(0)=1y(0)=1y(0)=1

02+C1+cos0=1→C=2\frac {0^2+C}{1+cos0}=1\to C=21+cos002+C=1C=2

y=x2+21+cosxy=\frac {x^2+2}{1+cosx}y=1+cosxx2+2

application

传递−-传导modal

dTdt=k(Te(t)−T(t))(k>0)\frac {dT}{dt}=k(T_e(t)-T(t)) (k>0)dtdT=k(Te(t)T(t))(k>0)

dTdt+kT(t)=kTe(t)\frac {dT}{dt}+kT(t)=kT_e(t)dtdT+kT(t)=kTe(t)

u(t)=e∫kdt=ektu(t) = e^{\int_{}{}kdt}=e^{kt}u(t)=ekdt=ekt

T(t)=∫u(t)kTe(t)dtu(t)=∫ektkTe(t)dtektT(t)=\frac {\int_{}{}u(t)kT_e(t)dt}{u(t)}=\frac {\int_{}{}e^{kt}kT_e(t)dt}{e^{kt}}T(t)=u(t)u(t)kTe(t)dt=ektektkTe(t)dt

给定初值T(0)=T0T(0)=T_0T(0)=T0

T(t)=e−kt∫0tkekt∗Te(t∗)dt∗+Ce−ktT(t)=e^{-kt}\int_{0}^{t}ke^{kt^*}T_e(t^*)dt^*+Ce^{-kt}T(t)=ekt0tkektTe(t)dt+Cekt

C=T0C=T_0C=T0

t→∞时Ce−kt=0t\to\infty时Ce^{-kt} =0tCekt=0(暂态解)

t→∞时e−kt∫0tkekt∗Te(t∗)dt∗≠0t\to\infty时e^{-kt}\int_{0}^{t}ke^{kt^*}T_e(t^*)dt^*\ne0tekt0tkektTe(t)dt̸=0(稳态解)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值